Not All Resources are Visible: Exploiting Fragmented

Shadow Resources in Shared-State Scheduler Architecture

anN—«utlR

Xinkai Wang, Hao He, Yuancheng Li, Chao Li, Xiaofeng Hou,
Jing Wang, Quan Chen, Jingwen Leng, Minyi Guo, Leibo Wang

SoCC 2023, Santa Cruz, California

w'(/vf— o i " v
i g ,’ ;éA ':lﬂ K V= : ACM Symposium
3 5 / N~ ﬂ‘ on Cloud Computing

X SHANGHALI JIAO TONG UNIVERSITY

o >y » A
F'(w i b o " ‘@ /‘4
A=) & /F AT
/’//,m TONC \/\

SHANGHAI JIAO TONG UNIVERSITY

CONTENTS

Introduction
Motivation
Design of RMiner

Evaluation

Introduction

PARIFONE

VA RN =d I

«© New Data Center Pipeline niercloud Layer 10 — ‘
« nice Directory, Accounting, Charging) x - - 2019 - t
1,000 oo°°~ U . d S e 2 2, S e 2011 aagregate 1.000 1.0
a\°°° o nlte tateS ® 08 2019 - single cell | | 0.995 0.8 EsE
& 4 : ey - g h S N w w —
o China . y Gamn = . & 0.990 06
o Ireland . £o° © ©o4
ot / ; B J | nter (OG5 £
o India ; 2]/ | s 0985 02
“ Spain - Datacenter (DC1 eer rovider g 0.4 0.980 0.0 - . .
feiual jareement g 100 400 700 1000 1300 10 10 10
Girada Compait oloud 2 o # of scheduling pods per min Waiting Time(s)
Italy D: ter (DG3 vi EV";/ E ’ .)))
Australia g ; - Figure 7. Distribution of the Figure 8. Distribution of
S O 00— TEtesa FTTe— — oy N .
0 e~ ®» 2 8 5T 8 8 % 8 8 Others 0 1000 2000 3000 4000 5000 6000 7000 number of pOdS to be SChed-waltlng time for pOdS with
8 R R R R R R R R R R Figure 1: Possible Sky computing architecture. x - Job submission rate (jobs / hour)

Source. : Synergy Researc h Group

uled in each minute. different SLO types.

The number of hyperscale datacenters are increasing, The concurrent job submission rate is increasing, and

and the domain of clouds is becoming bigger. the scheduling delay are harmful to applications.
Greater Greater
ﬂScheduling @ Scheduling
Domain Entities

Hyperscale datacenters call for better scheduling capabilities to meet the

requirements of request parallelism on heterogeneous clusters.

1. Stoical, Shenker S. From cloud computing to sky computing[C]//HotOS. 2021: 26-32.
2. Tirmazi M, Barker A, Deng N, et al. Borg: the next generation[C]//EuroSys. 2020: 1-14. 4
3. LuC, XuH, YeK, et al. Understanding and Optimizing Workloads for Unified Resource Management in Large Cloud Platforms[C]//EuroSys. 2023: 416-432.

J ‘—"L,_,._,?

Evolution of Large-scale Schedulers

The large-scale scheduler architecture are evolving due to the increasing demands.

Monolithic

. _IpOp

i

Low Scalability

Update | Task T
([Full Resource |
| \Visibility y

Two-Level

- (PP
f0m OB OB

(R

Central Resource State

_J

‘ Monolithic Scheduler

[[l]. Worker Node

Resource Cell

Newly Added
Features

> | High Scalability

J
Update | Task

4 -
Partial Resource

Shared-State

; (B OP

ORI OD ——
o MpIp |
State
Update

\4

> Full but Stale

’ Visibility)
| . -
Al Low Utilization

Resource Visibility

LC4

'[High Utilization
Updatl ‘ VTC VT OUpuUTte --_'_)
Delay L HEEN

i Partial
'l View

'| Scheduler

Partial Partial
View View

N N !
Scheduler Scheduler |

i Local Local EEEE Local ——

! State HEEN State HEENE State HEEMN | |
View | View View [[| I
Scheduler Scheduler Scheduler

Distributed schedulers

Distributed schedulers

Shared-state scheduler is becoming the popular architecture in datacenters.

Shared-state scheduler has been studied widely in both industry and academia.

> Structure of shared-state scheduler
[Omega @ Google, ParSync @ Alibaba, ...]

» Optimize the job wait time quality
[Sparrow @ UCB, Tarcil @ Stanford, ... |

> Better estimate resource allocation
[Borg @ Google, Apollo @ Microsoft, ... |

» Higher throughput and lower runtime
[Mercury @ Microsoft, Hawk @ EPFL, ...]

Our work aims at an inherent shortcoming of shared-state scheduler architecture,

Shared-state Scheduler

© Architecture Design

Scheduling Quality

Enhancements

Resource Utilization
O Enhancements

Job Completion Time

O Enhancements

, to enhance current structure design.

Motivation

PART TWO

VA RN =d I

Introduction to Shadow Resources

The resource states of distributed schedulers are stale within updating delays!

Allocated Local View Update Local View Update Resource R Local View Update
Resources v v y released il
Idle Resources Updating Delay Updating Delay Updating Delay ‘
| | | C === "~ > Time
Central State View ldle R is in Always up-to-date cluster
(CSV) for sche resource status
Local State View of . -
Scheduler 1 (LSV1) | |
et Rser“s"’(‘)duor‘(’;"e BT | periodically invisible to
i § i § some resource fragments
Local State View of : | ¥ - i E :
Scheduler 2 (LSV2) | .

Shadow resources are those that are not visible to the distributed schedulers in
their resource views when they can actually be used for allocation.

Shadow resources are considerable and precious, but hard to exploit them.

» Theoretical quantitative analysis of shadow resources

» Proportional to the amount of allocated resource in the cluster. d, X Tryn
| o E(X) =
» Inversely proportional to the average execution time of all tasks. 20

» Roughly account for 3% ~ 12.5% resources in the cluster!

0 025 [

» More severe with the advance of lightweight cloud-native tasks ¢ —

0.2 CPU Util. =17.35 —=-Theoretic ratio
Trace-driven:4.457

o
=
w

Theoretic:4.543 0=20.1s

> Microservice and serverless have shorter execution time.
Deviation=1.9% CPU Util. =49.69

. g 0 Trace—dri_vgn:l.Z?l
» We validate the trend with industrial trace-driven experiments. » A‘// Theaeic 121

» Two challenges hinders the utilization of shadow resources " - .

Average task execution time (s)

e / Allocated reso

o

» How to mine and manage shadow resources agilely and efficiently?

» How to allocate and utilize shadow resources flexibly and transparently?

We need to enhance the limited resource visibility of current shared-state design!

Design of RMiner

PARISIFRIREE

VA RN =d I

Overview of RMiner

RMiner pursues a high-performance and full-visibility scheduler system.

)2 Egj Egj E'Ej “AeeRv | > RMiner is built upon current shared-state schedulers.
No?r:c;??:sks o Sync State
Distributed Schedulers View Update (oo State View » Shadow Resource Manager detects and manages shadow
Local State Loca_l State Loca_l State <: -":l] .]
View View | View [resources with a newly-designed index.
LScheduIer] [Scheduler) [Scheduler] ommit \- .
Echo State No
S NermaTasks o <mmt. | » RM Scheduler assigns shadow resources to proper tasks
! Shad ! '
@ E Shadla\;vnggz?urce S?at(oavz RM Scheduler ! _ _
Sl s (" Sadon Fesource |y, [Shadow Fesaice | ' | » RM Filter selects tasks suitable for shadow resources.
E‘ N = State Indexes Commit Identifier .
g |2 oo] [RguT;seks] . » Wederive Intrusion Avoidance and Balanced Performance
|, |
| T—— RMTasks) /Rlvnner:\\ design principles for RMiner
//f -', // \\\\
7/ I >~
‘ I |Task Queuve | T, | T I—b[RM Scheduler]

Shadow Resource Manager o m e - @ Commi . . .
= g Foa . IE aed RMViner is composed of straightforward yet

! 1
Shadow Resources State Indexes 1Resquices . Resources

Enough, allocate 1 2 h
g v OL Not enoug

Shad Available R 7 7
Sraneoute o [palebe esmiee ||| T S TN effective component designs to work.
(Survival Time) [Occupled Resource] Task T Task T (| Task T,
N No update @ Enough, allocate
[Machine ID j [Allocated Tasks j l'g)c—ciﬂe_d': ----- IRSERECeos : F OGS~ ™~ Avaiatie Ty M d . | . h I
N ‘Resourcesi__ _ __Resources ____| 'Resourcesi_ _ _ _ _ Resources_____! Vie
[Shadow State View J (a) Y-commit on shadow resource (b) N-commit on normal resource O re et al S I n t e p ap er - 11

Different Objectives of RM Scheduler

RMiner have two objectives: resource utilization and scheduling conflicts.

Local view Resource R

Allocated Resources i re'eised
TO

update

Idle Resources

Updating Delay

RMtask T Local view Normal task Normal task
allocated to R update allocation allocation
vT1 vT2 vT3 vT4

Updating Delay

»

Utilizing shadow resource incurs

Shadow
State

: : Shadow resour(::_e survival time : Resouice waiting delay E Time' o '
"""""""" > Utilizing shadow resource is
E Allocation . . .
I Coniicr aggressive, but possibly incurs
"""""""""""" ! Allocation T WithR)) _
conflicts with normal scheduling!

no scheduling conflict, but the View

usage is fleeting and inadequate!

U

Safe RMiner (SafeRM)

View

SafeRM Mode SmartRM Mode
Shadow resource time Uy Ug+ Wy
RM filter policy SJF LJF

Max Utilization
Kill - Migratd

Min Conflict
Migrate - Kill

RM scheduling policy
Task eviction policy

+ Uy is shadow resource survival time and Wy is resource waiting delay.
+ SJF denotes shortest job first and LJF denotes lowest-priority job first.

Actual Invisible Shadow Resource Visible Resource Still Can be Utilized

U

Smart RMiner (SmartRM)

» SafeRM utilizes shadow resources with conflicts as few as possible

and lower the priority of resource utilization.

» SmartRM pursues maximized utilization via using resources when

they are visible and gives proper solutions for conflicts.

RMiner could adapt to different system design considerations for all.

Evaluations

PARIFFOUR

VA RN =d I

Evaluation Setups

We thoroughly analyze RMiner on the industrial simulator driven by cluster traces.

ado R Workload | Distribution| Sampled
ate vie edule Generator Expand traces
RM tasks r\‘
Echo|State = A \
View update
Central & Parallel TaSk. » Clusters
. < Allocation
state view Commit schedulers

AIIocationVDecisions

> We modify Google cluster simulatorf to
integrate shadow resource management
and scheduling functionalities.

» We mimic a 1500-nodes cluster with 64

CPUs and 16 memory slots.

avgJobInterarrvialTime

1.43 (1x) - 0.7 (2x)

1. 2014. Google cluster scheduler simulator. https://github.com/google/cluster-scheduler-simulator.

2. 2022. Alibaba Cluster Trace Program. https://github.com/alibaba/clusterdata.
3. 2019. ClusterData 2019. https://github.com/google/cluster-data/blob/master/ClusterData2019.md.

Resource status — Cluster status
" L) : : .
L L0gS | » We adopt two independent industrial
' ' ionl23]
Traces Alibaba Trace Google Trace traces to drive the simulation '
Average task execution time Sampled (4.94) 5 » We generate an input stream containing
Average task resource demand | Sampled (1.03/64) | Sampled (0.01) o _
Average size of jobs Sampled (12) 10 1 million jobs based on trace patterns.

» We compare two RMiners with typical

shared-state scheduler architecture.

14

https://github.com/google/cluster-scheduler-simulator

Normalized Resource Utilization

RMiner improves at resource utilization, throughput, and job wait time metrics.

| CINoRM mmiSafeRM mmSmartRM —o—SafeRM —0-SmartRM |

1.06 — ; =
Higher is better. | 112%
104 | m AL,
"""'El\ 58% Q""""{o 82% 72%,
1.02 R :

i '

4 ddid;

—0

50

1x 1.25x 1.5x 1.75x%

8schedulers

2% 1x 1.25x 1.5x 1.75x 2x

16 schedulers

Task Submitted Per Minute

SafeRM improves cluster CPU utilization by
1.5%-4%, SmartRM improves by 1.6%-5.8%.

120
100
80
60
40
20
0

%)

(=]
(=)

—

Shadow resource utilization

SafeRM utilizes 26%-82% shadow resources,

SmartRM utilizes 58%-112% of them.

(4]

e

[o*]

Task Throughput (1e6)
[#%)

-y

5
- o=SmarRM g Higher is betfter.
-0 -SafeRM ;-4
== MNoRM o
23
]
o0~ ©428% g o~
e 5 ﬁI [= &
e 10% %2 ® 9%
z 4
=
1
FReRY |FReR” FRenY | ReiRY
+ + + + + + + +
8schedulers 16 schedulers 8 schedulers 16 schedulers

Task Submitted Per Minute

(a) Results on Alibaba’s Trace

>

Task Submitted Per Minute

(b) Results on Google’s Trace

SafeRM achieves 4%-10% throughput

improvements, SmartRM improves 13%-28%.

RMiner performs better under higher

workloads and less parallel schedulers.

Job Wait Time (s)

25

%

] A =
e AT * 2’ +
5 G 9 & %

T
% % % %

8schedulers 16 schedulers
Task Submitted Per Minute

(a) Results on Alibaba’s Trace

» RMiner improves the waiting
time between the job submitted
and being scheduled by 25.4%.

RMiner achieves multi-dimensional performance improvements via flexible
utilization of shadow resources within shared-state architecture.

=]
(=]

S xR = r T |
o o o

Resource Utilization (%)
[=]

W
o o

Gain 4% utilization
with <3% confiict.

with <3% conflict.

-[+Base-R
—0—-SafeRM-R
-O-Base-T
-0-SafeRM-T

Higher is better.

Gain 4% throughput |

0 5 10
Job Conflict Rate (%)

(a) 8 schedulers

On average, SafeRM causes 0.5% more conflicts

o

I

(%]
Task Throughput (1e8)

(=]

Resource Utilization (%)
BMow B @~
[=] [==] [==] [=] (== =

Higher is befter.

Gain 6% utilization - =¥
with <3% conflict.

with <3% conflict.

Gain 13% throughput

-Base-R

—O-Base-T
—o—SmanRM-T

—e—SmartRM-R |

0

5 10
Job Conflict Rate (%)

(b) 16 schedulers

15

and SmartRM causes 0.73% more conflicts.

SmartRM causes 3% conflict increase in the worst

case for 6% utilization and 13% throughput.

More overhead analysis in the paper.

w

F-
Task Throughput (1e6)

2

Task Throughput (1e6)

35

25

Optimization Modes

| E@Throughput =—o=Utilization ‘ | poSafeRM OSmartRM-C B SmartRM-A

54
Daown) .10 ; 5

Hfgher is bettero oL 535 = Lower is Better. Different Goals
Same c — 8 i

o Bn An o 53 8 9 H

© o I

H ”” ” 525 N z 6 |

ldll 5 = % 4 :

zoq so« zogt soq€ [0« 8 K~ :

ret et Xt ittt Xt 5 = 2

Qo6 Qo6 Qo6 Qo€ QOa G o I

GTEE SEE WEE WEE [GEE 3 o — — X
Dpon Dpdh Dpd Dpd Dnd 4 3 0
0.3 0.4 05 06 | 07 = 03 04 05 0.6 07

Updating Delay (s) Updating Delay (s)

Different optimization modes of RMiner outperforms in respectively
targeted metrics under various scenarios
Performance of RMiner is affected by updating delay due to

different design objectives and normal parallel schedulers.

RMiner achieves improvements with acceptable costs, and it can be flexibly
configured for different design goals.

Conclusions

We discover the invisible resource opportunities in shared-state
scheduler architecture and analyze them comprehensively.

We introduce RMiner, a novel extension over current architecture
to mine and exploit the hidden shadow resources.

We thoroughly analyze RMiner over an industrial cluster simulator
to show the pros and cons of our designs.

In the future, we plan to integrate RMiner into industrial schedulers
and further enhance current mining and scheduling designs.

17

Thank You! Q & A

Not All Resources are Visible: Exploiting Fragmented
Shadow Resources in Shared-State Scheduler Architecture

Discussion: Xinkai Wang, unbreakablewxk@sjtu.edu.cn

/\“f\i%@ﬂﬁ

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18

