
Not All Resources are Visible: Exploiting Fragmented

Shadow Resources in Shared-State Scheduler Architecture

Xinkai Wang, Hao He, Yuancheng Li, Chao Li, Xiaofeng Hou,

Jing Wang, Quan Chen, Jingwen Leng, Minyi Guo, Leibo Wang

SoCC 2023, Santa Cruz, California

CONTENTS 1

2

4

3

Introduction

Motivation

Design of RMiner

Evaluation

PART ONE

Introduction

Increasing Scale of Datacenters

The scales of lower-level clusters and upper-level requests are increasing greatly!

1. Stoica I, Shenker S. From cloud computing to sky computing[C]//HotOS. 2021: 26-32.

2. Tirmazi M, Barker A, Deng N, et al. Borg: the next generation[C]//EuroSys. 2020: 1-14.

3. Lu C, Xu H, Ye K, et al. Understanding and Optimizing Workloads for Unified Resource Management in Large Cloud Platforms[C]//EuroSys. 2023: 416-432.

The number of hyperscale datacenters are increasing,

and the domain of clouds is becoming bigger.

The concurrent job submission rate is increasing, and

the scheduling delay are harmful to applications.

Greater

Scheduling

Domain

Greater

Scheduling

Entities

Hyperscale datacenters call for better scheduling capabilities to meet the

requirements of request parallelism on heterogeneous clusters.

4

Evolution of Large-scale Schedulers
C

lu
s
te

r

State

Update

Monolithic

State

Update

Scheduler

Local

State

View

Scheduler Scheduler

View Update

State

Update

Two-Level

Scheduler Scheduler Scheduler

Partial

View

Partial

View

Partial

View

C
lu

s
te

r

C
lu

s
te

r

Central Resource Manager Central State View

Updating

Delay

Shared-State

Allocate

Task

Central Resource State

Allocate

Task

Allocate

Resource

Allocate

Task

Commit

Local

State

View

Local

State

View

Monolithic Scheduler

Resource Cell

Newly Added

Features Distributed schedulers Distributed schedulers

Worker Node

The large-scale scheduler architecture are evolving due to the increasing demands.

Low Scalability

Full Resource

Visibility

High Scalability

Partial Resource

Visibility

Low Utilization

Shared-state scheduler is becoming the popular architecture in datacenters.

High Utilization

Full but Stale

Resource Visibility

5

Works about Shared-state Scheduler

Shared-state Scheduler

Architecture Design

Resource Utilization

Enhancements

Scheduling Quality

Enhancements

Job Completion Time

Enhancements

Shared-state scheduler has been studied widely in both industry and academia.

➢ Structure of shared-state scheduler
[Omega @ Google, ParSync @ Alibaba, …]

➢ Better estimate resource allocation
[Borg @ Google, Apollo @ Microsoft, …]

➢ Optimize the job wait time quality
[Sparrow @ UCB, Tarcil @ Stanford, …]

➢ Higher throughput and lower runtime
[Mercury @ Microsoft, Hawk @ EPFL, …]

Our work aims at an inherent shortcoming of shared-state scheduler architecture,

resource invisibility, to enhance current structure design. 6

➢ Structure of shared-state scheduler
[Omega @ Google, ParSync @ Alibaba, …]

PART TWO

Motivation

Introduction to Shadow Resources

Schedulers commit

resource allocation.

Idle R is invisible

for schedulers

Local View Update Resource R

released

Idle Resources

Central State View

(CSV)

Local State View of

Scheduler 1 (LSV1)

Local State View of

Scheduler 2 (LSV2)

8

Local View Update

R

Shadow

Resource

Local View Update

Time

Allocated

Resources

Updating Delay Updating Delay Updating Delay

Periodically invisible to

some resource fragments

Always up-to-date cluster

resource status

Shadow resources are those that are not visible to the distributed schedulers in

their resource views when they can actually be used for allocation.

The resource states of distributed schedulers are stale within updating delays!

Three Observations about Shadow Resources

9

➢ Theoretical quantitative analysis of shadow resources

➢ Proportional to the amount of allocated resource in the cluster.

➢ Inversely proportional to the average execution time of all tasks.

➢ Roughly account for 3% ~ 12.5% resources in the cluster!

Shadow resources are considerable and precious, but hard to exploit them.

𝑬 𝑿 =
𝒅𝒖 × 𝒓𝒓𝒖𝒏

𝟐𝝈

➢ More severe with the advance of lightweight cloud-native tasks

➢ Microservice and serverless have shorter execution time.

➢ We validate the trend with industrial trace-driven experiments.

➢ Two challenges hinders the utilization of shadow resources

➢ How to mine and manage shadow resources agilely and efficiently?

➢ How to allocate and utilize shadow resources flexibly and transparently?

𝝈=5.5s

CPU Util. =17.35

Trace-driven:4.457

Theoretic:4.543

Deviation=1.9%

𝝈=20.1s

CPU Util. =49.69

Trace-driven:1.271

Theoretic: 1.242

Deviation=2.4%

We need to enhance the limited resource visibility of current shared-state design!

PART THREE

Design of RMiner

Overview of RMiner

C
lu

s
te

r

Central State View

Shadow

State View

Echo State

Shadow Resource
Manager

Distributed Schedulers

RM Tasks

Queue

Commit

View Update

Allocate

Normal Tasks

Allocate RM

Tasks

RM Tasks

Scheduler

Local State

View

No

CommitNormal Tasks

RMiner

Scheduler

Local State

View

Scheduler

Local State

View

RM Scheduler

S
u
b
m

it
te

d
 T

a
s
k
s

R
M

 F
il

te
r

Yes

Commit

Shadow Resource

State Indexes

Shadow

State

11

Shadow Resource

Identifier

RMiner pursues a high-performance and full-visibility scheduler system.

Sync State

➢ RMiner is built upon current shared-state schedulers.

➢ Shadow Resource Manager detects and manages shadow

resources with a newly-designed index.

➢ RM Scheduler assigns shadow resources to proper tasks.

➢ RM Filter selects tasks suitable for shadow resources.

➢ We derive Intrusion Avoidance and Balanced Performance

design principles for RMiner

Shadow Resources State Indexes

Available Resource

Occupied ResourceSurvival Time

Allocated TasksMachine ID

Shadow State View

Shadow Resource ID

Shadow Resource Manager

RMiner is composed of straightforward yet

effective component designs to work.

More details in the paper!

Different Objectives of RM Scheduler

Updating Delay Updating Delay

R

Resource R

released

Time

Shadow

State

View

Central

State

View

Local

State

View

T0 T1

RM task T

allocated to R

Local view

update

Local view

update

Normal task

allocation

Resource waiting delay

T2 T3

No

update

Allocation

No conflict

Allocation

Conflict

with R
Echo

State

Shadow resource survival time

Normal task

allocation

T4

×

Actual Invisible Shadow Resource Visible Resource Still Can be Utilized

R

12

RMiner have two objectives: resource utilization and scheduling conflicts.

Idle Resources

Allocated Resources

Utilizing shadow resource incurs

no scheduling conflict, but the

usage is fleeting and inadequate!

Utilizing shadow resource is

aggressive, but possibly incurs

conflicts with normal scheduling!

Safe RMiner (SafeRM) Smart RMiner (SmartRM)

➢ SafeRM utilizes shadow resources with conflicts as few as possible

and lower the priority of resource utilization.

➢ SmartRM pursues maximized utilization via using resources when

they are visible and gives proper solutions for conflicts.

RMiner could adapt to different system design considerations for all.

PART FOUR

Evaluations

Evaluation Setups

Sampled

traces

Workload

Generator

Distribution

Expand

Parallel

schedulers

Central

state view

Clusters
View update Task

Allocation

Logs
Resource status

RM Filter

Shadow

state view

Echo State

Commit

Allocation Decisions
Cluster status

RM tasks

RM

scheduler

14

We thoroughly analyze RMiner on the industrial simulator driven by cluster traces.

➢ We modify Google cluster simulator[1] to

integrate shadow resource management

and scheduling functionalities.

➢ We mimic a 1500-nodes cluster with 64

CPUs and 16 memory slots.

1. 2014. Google cluster scheduler simulator. https://github.com/google/cluster-scheduler-simulator.

2. 2022. Alibaba Cluster Trace Program. https://github.com/alibaba/clusterdata.

3. 2019. ClusterData 2019. https://github.com/google/cluster-data/blob/master/ClusterData2019.md.

➢ We adopt two independent industrial

traces to drive the simulation[2][3].

➢ We generate an input stream containing

1 million jobs based on trace patterns.

➢ We compare two RMiners with typical

shared-state scheduler architecture.

https://github.com/google/cluster-scheduler-simulator

Improvements of RMiner

15

RMiner improves at resource utilization, throughput, and job wait time metrics.

➢ SafeRM improves cluster CPU utilization by

1.5%-4%, SmartRM improves by 1.6%-5.8%.

➢ SafeRM utilizes 26%-82% shadow resources,

SmartRM utilizes 58%-112% of them.

➢ SafeRM achieves 4%-10% throughput

improvements, SmartRM improves 13%-28%.

➢ RMiner performs better under higher

workloads and less parallel schedulers.

➢ RMiner improves the waiting

time between the job submitted

and being scheduled by 25.4%.

RMiner achieves multi-dimensional performance improvements via flexible

utilization of shadow resources within shared-state architecture.

Detailed Analysis of RMiner

16

Overheads

➢ On average, SafeRM causes 0.5% more conflicts

and SmartRM causes 0.73% more conflicts.

➢ SmartRM causes 3% conflict increase in the worst

case for 6% utilization and 13% throughput.

➢ More overhead analysis in the paper.

Optimization Modes

➢ Different optimization modes of RMiner outperforms in respectively

targeted metrics under various scenarios

➢ Performance of RMiner is affected by updating delay due to

different design objectives and normal parallel schedulers.

RMiner achieves improvements with acceptable costs, and it can be flexibly

configured for different design goals.

Conclusions

➢ We discover the invisible resource opportunities in shared-state

scheduler architecture and analyze them comprehensively.

➢ We introduce RMiner, a novel extension over current architecture

to mine and exploit the hidden shadow resources.

➢ We thoroughly analyze RMiner over an industrial cluster simulator

to show the pros and cons of our designs.

➢ In the future, we plan to integrate RMiner into industrial schedulers

and further enhance current mining and scheduling designs.

17

Thank You! Q & A

Discussion: Xinkai Wang, unbreakablewxk@sjtu.edu.cn

Not All Resources are Visible: Exploiting Fragmented

Shadow Resources in Shared-State Scheduler Architecture

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18

