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Background: Present AES Pipeline

AES has three-stage pipeline on limited heterogeneous hardware.
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Typical AES runs in 100ms iterations with 

power-restricted heterogeneous accelerators.



Background: AES Efficiency Optimization (EO)
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AES faces varied environments and complex hardware to manage.

Dynamics Case 1 Case 2 Case 3 Case 4

Vehicle Speed Low Low Fluctuated High

Surrounding Low Fluctuated Low Low

Task Complexity Low High High Low

Current Method V/F V/F

Expected Method V/F Adapting V/F with time V/F

AES Urban Road Traffic Jam Overtake Highway

Temporal Variance: External Dynamics. Spatial Variance: Accelerator Behavior. 

Require Continuous EO Require Intelligent EO

AES expects EO in 100ms granularity within a large optimization space.

[1] Kim, Young Geun, and Carole-Jean Wu. "Autoscale: Energy efficiency optimization for stochastic edge inference using reinforcement learning." MICRO 2020

[1]
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Background: Review of AES Optimization

Researchers explore resource and energy optimization separately.

Increasing Resource Heterogeneity

SOV, MICRO’20 [1] AutoPilot, MICRO’22 [2] FIRM, OSDI’20 [3] CALOREE, ASPLOS’18 [4]

Lack of utilizing ignored hetero-computing resource for costly EO facility .

Reducing Energy Consumption

?

[1] Yu, Bo, et al. "Building the computing system for autonomous micromobility vehicles: Design constraints and architectural optimizations." MICRO 2020

[2] Krishnan, Srivatsan, et al. "Automatic domain-specific soc design for autonomous unmanned aerial vehicles." MICRO 2022

[3] Qiu, Haoran, et al. "FIRM: An intelligent fine-grained resource management framework for SLO-Oriented microservices." OSDI 2020

[4] Mishra, Nikita, et al. "Caloree: Learning control for predictable latency and low energy." ASPLOS 2018

Accelerators offer unbalanced computing power On-device ML-based EO is costly for AES. 
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Motivation: EO is Costly for AES

Desirable efficiency optimization interfere with AES pipeline.

Complex ML models introduces great 

training / inference overheads.

Continuous EO disturbs execution

on resource-constrained AES.

FIRM, OSDI’20

Reinforcement Learning

Overhead=420ms / 40ms

CALOREE, ASPLOS’18

Transfer Learning

Overhead=500ms / 2ms

[1] Hou, Xiaofeng, et al. "CPM: A Cross-layer Power Management Facility to Enable QoS-Aware AIoT Systems." IWQoS 2024

[1]

Frame 1=100ms Frame 2=100ms

EO

Frame 1=100ms Frame 2=100msEO=10ms

Typical EO using normal computing power 

causes ~10% slowdown of each iteration.
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training / inference overheads.

Continuous EO disturbs execution

on resource-constrained AES.

FIRM, OSDI’20

Reinforcement Learning

Overhead=420ms / 40ms

CALOREE, ASPLOS’18

Transfer Learning

Overhead=500ms / 2ms

[1] Hou, Xiaofeng, et al. "CPM: A Cross-layer Power Management Facility to Enable QoS-Aware AIoT Systems." IWQoS 2024

[2]

Frame 1=100ms Frame 2=100ms

EO

Frame 1=100ms Frame 2=100msEO=10ms

Typical EO using normal computing power 

causes ~10% slowdown of each iteration.

10% slowdown due to efficiency optimization is 

unacceptable for safety-critical AES.
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Motivation: Shadow Cycles for EO

AES presents underutilized shadow cycles for deploying EO.

Simple Parallel Inferences

➢ Vertical Shadow Cycles (VSC) 
Preemptive and Variable-sized

➢ Horizontal Shadow Cycles (HSC) 
Periodic and Short-lived

Diversity of inference and accelerator 

present misaligned execution.

Shadow cycles are underutilized and 

ignored computing resources in AES.

Modern BEV Pipeline

Typical inferences on GPU and DLA produces 

~12% underutilized resources.

The ignored resources in AES are promising for EO without slowdown.
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SHEEO Design Consideration
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Using Heterogeneous Resource Reducing Energy Consumption

External Environment

Learning and ControlUtilization of Shadow Cycles

Internal Runtime Status

Two key issues exist in SHEEO design…

𝛴
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Agile Inference 

How to Observe AES?

How to Optimize AES?



SHEEO Overview
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SHEEO exploits shadow cycles for continuous and intelligent EO.

➢ SHEEO has two cooperative components: real-time monitor and continuous learning manager.

➢ SHEEO works at OS, enhancing power management facility without intrusion into AES pipeline.



SHEEO Observation: Environment and Workload
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SHEEO observes internal and external status via real-time monitor.

➢ State Table for External Environment

➢ Model the external stochastic variance.

➢ Use discrete ranges to reduce complexity.

➢ State Table for Internal Runtime Status

➢ Model software and hardware features.

➢ Adjustable for actual AES workloads. 

➢ Runtime Monitor observes the start and end of AES 

tasks for recording shadow cycles.

➢ It observes the environment changes and system status 

and records them into the 7-dimensional state table.
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SHEEO observes internal and external status via real-time monitor.

➢ Runtime Monitor observes the start and end of AES 

tasks for recording shadow cycles.

➢ It observes the environment changes and system status 

and records them into the 7-dimensional state table.

➢ State Table for External Environment

➢ Model the external stochastic variance.

➢ Use discrete ranges to reduce complexity.

➢ State Table for Internal Runtime Status

➢ Model software and hardware features.

➢ Adjustable for actual AES workloads. 
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SHEEO optimizes efficiency via continuous learning manager.

➢ Continuous Learning Manager adopts reinforcement 

learning (Q-learning) to optimize energy efficiency.

➢ It embeds continuous learning into VSC and action control 

into HSC to reduce power management facility costs.

➢ SHEEO learns optimal action of given states.

➢ Consider status of consecutive iterations.

➢ Adjustable for Q-learning, DDPG, DRL, etc.

Two-fold Reward

➢ Minimize performance slack

➢ Maximize energy efficiency

➢ Used for updating Q-table

Utilizing preemptive and 

variable-sized VSC.
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SHEEO optimizes efficiency via continuous learning manager.

➢ Continuous Learning Manager adopts reinforcement 

learning (Q-learning) to optimize energy efficiency.

➢ It embeds continuous learning into VSC and action control 

into HSC to reduce power management facility costs.

7-dimensional Action

➢ Divided into discrete levels.

➢ Consider heterogeneous HW.

➢ SHEEO controls the action in next iteration.

➢ Use 𝜖 to control exploitation & exploration.

➢ Agilely make decisions with largest 𝑄(𝑆, 𝐴).

Utilizing short-lived and 

periodic HSC.
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Evaluation Methodology and Settings
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We evaluate SHEEO extensively on commercial edge platforms.

➢ We evaluate SHEEO on Nvidia Jetson AGX Orin and consider shadow cycles on GPU and NVDLA.

➢ We set learning rate as 0.9, discount factor as 0.1, and exploration probability as 0.1.

➢ We mimic the perception stage of AES pipeline with three networks with different combinations.

Evaluated Baselines

Workload-Aware Control [1] Use static model to profile workloads.

Learning-Based Control [2] Use ML model and historical statistics.

Oracle Offline optimal energy efficiency scheme.

Evaluated Workloads

SSD ssd-mobilenet-v1 for object detection.

YOLO yolov3-tiny-416 for image detection.

SRCNN super-resolution-bsd500 for image reconstruction.

[1] Bateni, Soroush, and Cong Liu. "NeuOS: A Latency-Predictable Multi-Dimensional Optimization Framework for DNN-driven Autonomous Systems." USENIX ATC 20

[2] Mishra, Nikita, et al. "Caloree: Learning control for predictable latency and low energy." ASPLOS 2018

Evaluated Platform Specifications

Device Nvidia Jetson AGX Orin Module

CPU 8-core ARM Cortex-A78 v8.2

GPU 1792-core Ampere GPU with 56 tensor cores

Memory 32GB 256-bit LPDDR5

Accelerator 2x NVDLA v2, 1x PVA v2

System Linux 5.19.104-tegra with Jetpack 5.1.1

Software CUDA 11.4 and TensorRT 8.5.2



Harvesting Heterogeneous Resources
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SHEEO harvests shadow cycles in AES under various scenarios.
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An example iteration in AES pipeline 

with SHEEO harvesting shadow cycles.

SHEEO harvests up to 88% vertical shadow 

cycles and 51% horizontal shadow cycles.

➢ Q-learning is too lightweight to occupy all the shadow 

cycles, but more advanced facilities could utilize better.

➢ The harvesting ratio is higher under higher vehicle 

speed and higher runtime variance scenarios.



Reducing Energy Consumptions
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SHEEO improves energy efficiency of AES under various scenarios.
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SHEEO provides a more agile and 

accurate power management solution.

SHEEO achieves better energy-delay 

product (EDP) compared with baselines. 

➢ SHEEO achieves better energy efficiency under 

higher runtime variance and medium vehicle speed.

➢ SHEEO improves energy efficiency with a little sacrifice 

of execution performance. 

9.4%
19.8%

7.6%
19.7%
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Vision: Future of Autonomous Systems
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Future accelerator-rich architecture produce 

more shadow cycles to exploit!

Towards better accelerator usage for efficient system operations.

Future artificial brains require more smart 

facilities and workloads to deploy!

ML-based 

Resource 

Mgmt. [2]

Perspective 

View Taks in 

BEV AES [3]

[1] Xinkai, Wang, et al. "Not All Resources are Visible: Exploiting Fragmented Shadow Resources in Shared-State Scheduler Architecture.” SoCC 2023 

[2] Lingyu, Sun, et al. "A2: Towards Accelerator Level Parallelism for Autonomous Micromobility Systems." TACO 2024

[3] Lingyu, Sun, et al. "Jigsaw: Taming BEV-centric Perception on Dual-SoC for Autonomous Driving." RTSS 2024

Moving Towards Efficient Autonomous Systems!



Conclusion
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➢ We analyze shadow cycles in autonomous embedded systems 

and the need to continuously optimizing energy efficiency.

➢ SHEEO is an intelligent continuous energy efficiency optimizer 

that first embeds the costly facility into shadow cycles.

➢ SHEEO harvests the underutilized hetero-computing resources 

and improves AES energy efficiency under various scenarios.

➢ By exploiting “free” shadow cycles within more heterogeneous 

accelerators, AES can enable a wide range of intelligent 

management facilities and autonomous workloads.



Thank You! Q & A

Discussion: Xinkai Wang (Presenter), unbreakablewxk@sjtu.edu.cn

SHEEO: Continuous Energy Efficiency Optimization

in Autonomous Embedded Systems
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