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Abstract—The emerging trend of autonomous embedded sys-
tems minimizing human intervention has raised new questions
about continuously maximizing system energy efficiency faced
with stochastic runtime variance, which is costly for resource-
constrained autonomous embedded systems. Considering het-
erogeneous hardware and variable software, we envision op-
portunities for vertical and horizontal shadow cycles within
the AES pipeline for management facilities. This paper intro-
duces SHEEO, a continuous energy efficiency optimizer that
exploits underutilized heterogeneous computing resources to
pursue variability-aware power management. To achieve this,
SHEEO constantly monitors inner and outer variances and
customizes reinforcement learning into two phases for stochastic
runtime variance. We implement and deploy SHEEO on a
commercial edge platform. The evaluation results show that
SHEEO harvests up to 88% shadow cycles and improves up
to 39% energy efficiency compared to state-of-the-art power
management techniques with negligible overheads.

Index Terms—Energy Efficiency, Continuous Learning,
Shadow Cycles, Autonomous Embedded System

I. INTRODUCTION

With an emphasis on intelligent systems minimizing hu-

man intervention, autonomous embedded systems (AES) have

recently become a promising trend in both academia [8]

and industry [16]. AES surpasses traditional human-involved

systems by sensing the environment, perceiving the objects,

and actuating the vehicle on highly integrated embedded

platforms [10]. Considering the ability of AES to reduce the

burden on people, many industry leaders such as Nvidia [16]

and Tesla [19] have invested large amounts of capital and

engineering power in developing such systems.

AES has three major differences from traditional well-

studied systems, as shown in Figure 1. Firstly, the underlying

architecture comprises heterogeneous hardware accelerators,

providing varied domain-specific computing capabilities [9].

Also, the hardware heterogeneity requires more comprehen-

sive and adaptive management facilities [4]. Secondly, the

mission-critical tasks of AES are organized into a three-stage

pipeline executing iteratively, i.e., sensing, perception, and

actuation [10]. The perception stage consists of a fixed number

of AI-based tasks that execute concurrently on heterogeneous

hardware [25]. Thirdly, AES faces more severe stochastic

runtime variance than before due to unpredictable execution

status and continuous interaction with the environment [6],

requiring variability-aware and intelligent power management

under severe energy budget [3].
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Fig. 1: Overview of autonomous embedded systems.

Faced with runtime variances, AES calls for a continu-

ous and intelligent energy efficiency optimizer. Practically,

the changing vehicle speed, outer environment surroundings,

and inner task complexity constitute the stochastic nature of

AES [8], which is ignored by current constraint-aware and

workload-aware efficiency optimizer [2], [12]. Therefore, AES

needs a variability-aware energy efficiency optimizer at the

granularity of each three-stage iteration. What’s worse, such

continuous efficiency optimizer frequently occupies normal

resources to make decisions, interfering with the mission-

critical tasks in the pipeline.

The heterogeneous hardware and variable software result

in underutilized heterogeneous computing resources in AES,

which are desirable for deploying management facilities. We

define the potential resource fragments in each three-stage

iteration as shadow cycles and divide them into two categories.

The Vertical Shadow Cycles (VSC) exist in the waiting time

of heterogeneous hardware within the perception stage, and

the Horizontal Shadow Cycles (HSC) exist in the sensing

and actuation stages with idle accelerators. Inherently, the

preemptive VSC and HSC are volatile and short-lived in du-

ration, respectively. Shadow cycles are valuable for resource-

constrained AES by enlarging the resource visibility, but it

is challenging to transparently utilize them. Normal mission-

critical tasks cannot be guaranteed on shadow cycles, but the

auxiliary management tasks could seize the opportunities.

Considering the potential of underutilized resources and

the need for runtime optimization, it is attractive to utilize

shadow cycles for continuous energy efficiency optimizers.

To this end, we propose SHEEO, a continuous Energy

Efficiency Optimizer with SHadow cycles, which exploits the

underutilized heterogeneous computing resources to enable

variability-aware power management every iteration. SHEEO
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knobs of COTS embedded platforms.

is composed of two well-designed components to pursue

optimal energy efficiency. It monitors the external environment

dynamics and the internal execution status with Real-time
Monitor. The Continuous Learning Manager customizes rein-

forcement learning based on AES properties into two phases

to learn and optimize AES energy efficiency.

To evaluate SHEEO thoroughly, we implement and deploy

it on a commercial edge platform, Nvidia Jetson Orin. Under

various scenarios, we demonstrate that SHEEO harvests up to

88% shadow cycles within AES to deploy continuous energy

efficiency optimizers. Further, SHEEO improves up to 39%

and 27% energy consumption over state-of-the-art workload-

aware and learning-based power management baselines via

more aggressively tuning power with negligible overheads.

This paper makes the following key contributions:

1) Analysis: We envision the potential of shadow cycles

within the heterogeneous autonomous embedded sys-

tems and the urgent need for continuously optimizing

energy efficiency with runtime variances.

2) Design: We propose an intelligent continuous efficiency

optimizer on shadow cycles SHEEO and design two

components to learn and optimize AES efficiency.

3) Evaluation: We implement and deploy SHEEO on

edge platforms to prove its effectiveness in harvesting

shadow cycles and efficiency in improving AES energy

efficiency under various scenarios.

The rest of this paper is organized as follows: Section

II discusses the background and Section III introduces our

motivations. Section IV proposes our detailed designs and

Section V thoroughly evaluates SHEEO. Section VI presents

discussion and Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Researches of Autonomous Embedded Systems

Autonomous systems operate independently without requir-

ing human intervention, such as autonomous driving [16] and

unmanned aerial vehicles [5]. They mainly have two differ-

ences with traditional systems. On the architectural aspect,

unlike traditional systems deployed in large-scale datacenters

with clear workload division, autonomous systems are usually

deployed on edge embedded platforms such as commercial

off-the-shelf (COTS) Nvidia Jetson AGX Orin [15] as shown

in Figure 2. Such embedded platforms are equipped with abun-

dant heterogeneous computing units, which are integrated into

a single board and responsible for miscellaneous workloads.

Apart from architectural differences, AES exhibits distinct

software execution patterns. It executes a horizontal three-

stage pipeline iteratively, and diverse workloads run con-

currently in a single stage [10]. Firstly, it gathers the en-

vironment information with diverse real-time sensors in the

sensing stage [23]. Then, it performs concurrent processing

and prediction of the objects with various deep neural networks

to understand the external conditions in the perception stage.

Finally, it makes decisions based on the processed information

in the actuation stage. The perception stage mainly occupies

heterogeneous computing power while the other two stages

mainly occupy general computing power of CPU [9]. Every

three-stage iteration has a dynamic latency constraint, and

the AI-intensive perception stage takes up more than 90%

execution time within each iteration [8].

Prior works from academia and industry focus on archi-

tecting and scheduling the AES [14], [22]. Shi-Chieh and

Bo comprehensively present the architectural implications and

design considerations of AES [8], [23]. Soroush proposes a

predictable data-driven scheduler to manage the resources of

AES [1]. However, these works ignore the hidden hetero-

computing resource fragments due to the hardware and soft-

ware heterogeneity within AES.

B. Intelligent and Heterogeneous Power Management

Faced with more complex hardware and software, re-

searchers utilize machine learning methods to enhance tra-

ditional power management solutions. In cloud comput-

ing, workloads and runtime are more stable than AES,

and researchers use predictive models to learn energy effi-

ciency [11]–[13], [21], [24]. Such solutions target systems

with little stochastic runtime variance and occupy additional

hardware resources for learning and deciding. In the AES

scenario, there are a few prior works on intelligent power

management [2], [6], [17]. NeuOS is a latency-predictable

multi-dimensional optimization framework for multi-DNN

workloads in AES [2]. Such solutions pay more attention to the

characteristics of workloads while overlooking the stochastic

runtime variance and lacking real-time adaptation.

Further, power management for heterogeneous architectures

is much more challenging. Dynamic voltage and frequency

scaling (DVFS) for a single component often conflict when

performed independently by separate controllers [4]. Prior

works rely on empirical models to manage the power supply

of CPU-GPU systems [7], but such static methods fail to

grasp the changing behaviors of AES. Therefore, adaptive

and intelligent power management is crucial to pursuing the

efficiency optimals of heterogeneous AES.

III. MOTIVATION

A. Harvesting shadow cycles in AES

In autonomous embedded systems, diverse neural networks

execute on heterogeneous accelerators to understand the envi-
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Fig. 3: Different inferences exhibit much performance diver-

sity on heterogeneous hardware.

ronment [10], causing underutilized heterogeneous computing

resources within the pipeline. We characterize representative

workloads of AES [8], including object detection and ob-

ject tracking, on COTS edge platform Nvidia Jetson AGX

Orin [15]. We select three typical neural network inferences: 1)

ssd-mobilenet-v1 (SSD), 2) yolov3-tiny-416 (YOLO), and 3)

super-resolution-bsd500 (SRCNN) to constitute the perception

stage. We average the results of 100 repeated experiments for

each setting to reduce random biases.

Figure 3 reports the average performance, and we have two

key observations. On the one hand, Figure 3a presents the

inference time distribution of three tasks on GPU and deep

learning accelerator (DLA). We find that the inference time

varies among neural networks on different accelerators due

to varied model sizes and hardware capabilities. On the other

hand, Figure 3b shows the execution misalignment of various

tasks within the perception stage. We select four typical

mapping schemes that allocate different tasks to underlying

accelerators. Tasks allocated on GPU and DLA are executed

for varied duration and the unit that finishes ahead remains

idle until the latter finishes. The misalignment phenomenon

is widespread in AES with execution variability and is more

complex with more concurrent tasks in realistic scenarios.

Given the AES characterizations, we envision the potential

of underutilized heterogeneous computing resources within the

execution pipeline, termed as shadow cycles. In this paper, we

focus on the shadow GPU and DLA resources since they are

mostly utilized in AES. The shadow cycles are familiar in

traditional systems, such as multi-core CPUs that utilize idle

cores for work stealing. We discuss more in Section VI-B.

However, AES executes in a fixed and repetitive manner,

making shadow cycles more fragmented and variable. As

shown in Figure 4, we categorize two types of shadow cycles:

1) Vertical Shadow Cycles (VSC): The idle hetero-

computing resources within the waiting time until the

slowest task in the perception stage.

2) Horizontal Shadow Cycles (HSC): The idle hetero-

computing resources in the sensing and actuation stages

of the horizontal pipeline.

More specifically, shadow cycles are different from normal

heterogeneous computing resources. Firstly, the underutilized

resource fragments are preemptive since the normal function-
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Fig. 4: Two types of underutilized shadow cycles within the

execution pipeline of AES.

alities are most important. Secondly, VSC results from the

misaligned execution of concurrent tasks within the perception

stage, so it is volatile in its duration due to varied task and

hardware mappings. For example, the VSC in Figure 3b ranges

from 14-70 milliseconds, depending on the perception stage

settings. Thirdly, HSC results from the horizontal pipeline

with CPU-intensive actuation stages, so it is short-lived in its

duration since the actuation stage occupies a small proportion

in each iteration. For a typical 100ms end-to-end latency

constraint, the HSC exists around 5-10 milliseconds [8] in

every 100ms AES pipeline.

In resource-constrained AES, utilizing shadow cycles is

both valuable and challenging. Exploiting these underutilized

resources could fully release the heterogeneous computing

power in AES but faces two key challenges. (1) How to
capture shadow cycles efficiently? Given the volatile VSC

and short-lived HSC, it is crucial to capture and organize

them for utilization quickly. (2) How to exploit shadow cycles
transparently? Even if we could manage shadow cycles as

wished, the preemptive property makes it suitable to deploy

auxiliary tasks on them instead of normal mission-critical

tasks. We analyze that VSC fits tasks executing adaptively in

length while HSC fits tasks executing rapidly and demanding

little hardware resources.

B. Continuous Learning for Energy-Efficient AES

Running AES is a dynamic system continuously changing

and interacting with the environment, requiring an adaptive

energy efficiency optimizer. The runtime dynamics mainly

contain three parts: 1) vehicle speed, which changes with

time and influences the latency constraints of AES [23]; 2)

surrounding changes, which denotes the external environment

variation and determines the understanding complexity for

AES [5]; 3) task complexity, which varies in each iteration

based on AES status. Such dynamic factors exist continuously

such that the current constraint-aware efficiency optimizer [2]

fails to make optimal power management decisions.

As shown in Figure 5, for a running AES, case 1 is straight-

forward, and the optimal decision is to decrease the power

supply (i.e., decrease V/F level). However, AES in case 2 and
3 experiences runtime dynamics, and the traditional method

fails to make continuous adaptations. Latency constraints in

case 4 are tight, but reducing power supply is safe and energy-

efficient in such scenarios with an understanding of current
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surroundings. In summary, AES calls for a continuous and

intelligent energy efficiency optimizer.

Considering the analysis of shadow cycles and runtime

dynamics of AES, it is necessary and suitable to utilize

shadow cycles for continuous efficiency optimizer. Firstly,

the optimal power management adapting to runtime dynam-

ics is continuous learning, which learns behaviors through

trial-and-error interactions with the environment and easily

scales to heterogeneous hardware management. However, it is

costly to occupy normal heterogeneous computing resources

in every iteration [12]. Thus, deploying the continuous effi-

ciency optimizer with shadow cycles is necessary for resource-

constrained AES. Secondly, continuous learning fits well with

shadow cycles within the AES pipeline. VSC is suitable for the

training (learning) process that is preemptive on heterogeneous

computing units and can be performed in variable sizes. HSC

is suitable for the inference (control) process that is relatively

lightweight and performed in every iteration.

IV. DESIGN

Based on the above analysis, it is of great help for au-

tonomous embedded systems to exploit shadow cycles for

continuously optimizing energy efficiency. In this work, we

propose SHEEO, a continuous Energy Efficiency Optimizer

with SHadow cycles, which exploits the underutilized het-

erogeneous computing resources to perform variability-aware

power management at iteration granularity. SHEEO automates

the above process through a real-time monitor and a continu-

ous learning manager, as shown in Figure 6.

A. Real-time Monitor

SHEEO abstracts away the complexity of the external

environment and internal software and hardware through the

real-time monitor. During runtime, it observes both the un-

derutilized periods and the execution conditions with several

ready-to-use systems interfaces and methods. Firstly, it closely

monitors the execution pipeline of AES. We modify the tasks

of AES to report their start time and end time to the monitor

in real-time. When an individual task in the perception stage

finishes without subsequent candidates, the monitor marks the

start of VSC periods for the continuous learning manager.

When the slowest task of the perception stage finishes, the
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Fig. 6: Workflow of the two components of SHEEO.

monitor marks the end of VSC periods. In other stages, the

monitor marks HSC periods until the start of perception tasks.

In addition, the real-time monitor is responsible for in-

teracting with the environment and system. It monitors the

vehicle speed and environment changes as runtime dynamics

and records the metadata of executing workloads for every

iteration by collecting the computing and memory utilization

through the jetson stat tool. The collected information is

organized into an ordered array indexed by iteration and

fed into the continuous learning manager to make decisions.

Equipped with the monitor, SHEEO can harvest shadow cycles

accurately and continuously optimize AES energy efficiency.

B. Continuous Learning Manager

The continuous learning manager of SHEEO takes into

account real-time knowledge to manage energy efficiency.

Among the various reinforcement learning methods, such as

Q-learning, TD-learning, and deep-RL, we choose Q-learning

for the continuous efficiency optimizer since it employs a

lookup table to find the best action with low overhead. We

implement the continuous learning manager by Q-learning

with value function Q(S,A), which takes state S and action

A as parameters and is called a Q-Table. To fully utilize the

historical information with shadow cycles, we design a Store

Table to record the unexploited data.

As shown in Figure 6, the monitor � observes the envi-

ronment status and system states and stores them in the Store

Table. During VSC periods, the manager � updates the Q-

Table according to historical information in the store table.

During HSC periods, the manager � selects the optimal power

management actions with the best energy efficiency based on

the Q-table. After the execution is completed, the manager �
gets feedback from the observing objects and calculates the

reward to the store table. The continuous learning manager is

composed of three key components (state, action, reward) and

two well-designed algorithms.

State: As shown in Table Ia, the multi-dimensional state

contains workload features and runtime features. For neural

network inference tasks, the number of convolutional layers

(CONV) SCONV , fully-connected layers (FC) SFC , and re-

current layers (RC) SRC is deeply correlated with the energy

efficiency and performance of inference execution. Based on



TABLE I: Design details of continuous learning manager.

(a) Multi-dimensional state-related features

State Descriptions Discrete Values

Workload
Features

SCONV Number of CONV layers L (<30), M (<50), H (≥50)
SFC Number of FC layers L (<10), H (≥10)
SRC Number of RC layers L (<10), H (≥10)

Runtime
Dynamics

SSpeed Current vehicle speed L (<10mph), M (<40mph), H (≥40mph)
SVar Variation from last execution L (<10%), M (<30%), H (≥30%)
SCom Computing units’ utilization L (<25%), M (<75%), H (≥75%)
SMem Memory utilization L (<25%), M (<75%), H (≥75%)

(b) Power tuning actions

Actions Descriptions
SX Turn On/Off Component X

NCPU Number of Active Core
FCPU V/F Level of CPU Core
FGPU V/F Level of GPU
FDLA1 V/F Level of DLA1
FDLA2 V/F Level of DLA2
FMEM V/F Level of Memory

the analysis above, the fluctuated vehicle speed SSpeed and

the surrounding changes SV ar (represented by the variation

between adjacent perceptions) represent stochastic runtime

variance. In addition, the current utilization of computing units

SCom and memorySMem is vital for future energy efficiency

decisions. We summarize the above into a seven-tuple state

and set the discrete values for each feature based on prior

characterization and analysis.

Action: Table Ib lists the power tuning actions of the

manager, which represent the adjustable knobs of heteroge-

neous hardware in AES. NCPU denotes the core throttling

mechanism to shut down the idle cores. FX denotes the DVFS

mechanism on different components. The actions constitute a

six-tuple for each iteration to decide the configuration for each

component. The tuning range for each knob is determined by

the power mode configurations and is restricted by the overall

power supply of AES (e.g., maximum 50W for Orin). For

example, if the latency constraints are satisfied in the last

iteration and the environment becomes easier to understand, it

is possible to shut down some computing units and reduce the

frequency of active units to save energy. The set of actions

is determined at the hardware layer for now and can be

augmented by considering more software tuning knobs.

Reward: The reward determines the optimization objectives

in each iteration, and we design a two-fold reward R to pursue

optimal energy efficiency under latency constraints. We define

the reward of SHEEO as the weighted sum of performance

reward Rlatency and efficiency reward Renergy . Rl is the

measured latency of the perception stage for selected actions

from the real-time monitor. Re is the measured energy usage

of the targeted hardware defined as below. Here we demon-

strate Nvidia Jetson AGX Orin, where VDD GPU SOC and

VDD CPU CV represent the power of all targeted hardware

units and Tb (Te) represents the begin (end) time.

R = aRlatency + bRenergy s.t. Rl ≤ Constraint

Rlatency = max
t∈Perception

T t
end − Tstart

Renergy =
∑
i

Ei
Unit =

∑
i

∫ Te

Tb

Pfδt+ Pidle × tidle

Aside from three elements, the continuous learning manager

pursues agile decision-making and uses Q-learning to exploit

the low decision latency. We carefully design a continuous

learning algorithm to utilize the VSC and HSC. Algorithm 1

Algorithm 1: Algorithm for continuous learning

Input: Pre-trained Q-table Q(S,A), learning rate α,

discount factor γ, exploration probability ε
Output: Fine-tuned Q-table and Action A for each

iteration

1 while ∃ VSC periods and ∃ Store Table do
2 Calculate recorded reward Renergy and Rlatency;

3 For consecutive S and S′ and chosen action A;

4 Choose action A′ with the largest Q(S′, A′);
5 Q(S,A)← Q(S,A)+α[R+γQ(S′, A′)−Q(S,A)];
6 S ← S′

7 end
8 foreach HSC periods do
9 Gather S and locate in Q(S,A);

10 if rand() < ε then
11 Choose action A randomly;

12 else
13 Choose action A with the largest Q(S,A);
14 end
15 Store Table ← (A, S’) ;

16 end

shows the process of continuously training the Q-table within

VSC periods. It inputs a pre-trained Q-table Q(S,A), learning

rate α denoting the importance of rewards, and discount factor

γ denoting the relationship between consecutive states. It will

iteratively fine-tune the Q-table until the VSC period ends or

historical information is all used. For each iteration within

VSC periods (line 1), it calculates the reward (line 2), gets

consecutive information from the store table (line 3), chooses

the corresponding action (line 4), updates the Q(S,A) based

on the equation (line 5). With algorithm 1, SHEEO can utilize

vertical shadow cycles adaptively and fine-tune the Q-table for

more accurate decisions constantly.

Concerning HSC, Algorithm 1 shows the details for select-

ing actions maximizing energy efficiency. To deal with the

exploitation versus exploration dilemma, SHEEO employs the

epsilon-greedy method with parameter ε, which chooses the

action with the highest reward or a uniformly random action

based on an exploration probability. For the observed S in the

Q-table (line 9), it evaluates a random value compared with ε
(line 10). If the random value is smaller than ε, the algorithm

chooses A randomly for exploration (line 11). Otherwise, it



TABLE II: Evaluation platform specifications.

Device Nvidia Jetson AGX Orin Module
CPU 8-core ARM Cortex-A78 v8.2
GPU 1792-core Ampere GPU with 56 tensor cores

Memory 32GB 256-bit LPDDR5
Accelerator 2x NVDLA v2, 1x PVA v2

System Linux 5.10.104-tegra with Jetpack 5.1.1
Software CUDA 11.4 and TensorRT 8.5.2

chooses A with the largest Q(S,A) (line 13). After that, the

information is recorded in the store table for future usage (line

15). SHEEO can select actions agilely with maximized energy

efficiency, and the decision process fits HSC perfectly.

V. EVALUATION

In this section, we thoroughly evaluate SHEEO. Specifically,

we want to answer three questions:

1) How can SHEEO harvest shadow cycles in AES?

2) How can SHEEO continuously optimize efficiency?

3) How about the deployment overhead of SHEEO?

A. Evaluation Methodology

Implementations To evaluate SHEEO in realistic AES, we

implement a prototype of the two components in Python. As

for the hyperparameters in SHEEO, we set the learning rate

α as 0.9 to reflect the reward more to the Q values and the

discount factor γ as 0.1 to decrease the relationship between

consecutive states due to the stochastic nature of AES. Also,

we empirically set the exploration probability ε as 0.1 to prefer

exploitation instead of exploration.

Specifications: We perform the evaluations on a typical COTS

embedded platform, Nvidia Jetson AGX Orin [15], and Table

II summarizes the platform specifications. We focus on the

shadow cycles on GPU and NVDLA since they are mostly

used for AES inference tasks. During the execution, we record

the hardware utilization with jetson stat tool and measure the

power with the onboard power meter updated at 5ms intervals

to calculate energy consumption. We overwrite the default

power mode setting to set 12 frequency levels for both GPU

and DLA. As for the software, we take three typical neural

networks: SSD, YOLO, and SRCNN with FP16 precision, as

detailed in Section III-A, and we combine them together to

mimic the perception stage of the AES pipeline.

Baselines: To fully evaluate SHEEO, we compare it with two

types of state-of-the-art (SOTA) baselines: Workload-Aware

Control (WAC) methods [2] and Learning-Based Control

(LBC) methods [12]. The former relies on the static model

to profile workloads and makes power management decisions

based on the system constraints (e.g., LAG analysis). The latter

uses a machine learning model and historical statistics to make

optimal power management decisions. We compare the SOTA

works of the two categories with SHEEO.

B. Evaluation Results

1) Effectiveness (RQ1): The primary goal of SHEEO is har-

vesting the underutilized resources within autonomous embed-
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ded systems. Figure 7 shows an example iteration in the three-

stage AES pipeline, composed of sensing, perception, and ac-

tuation stages. We present the effectiveness by comparing the

heterogeneous hardware utilization with and without SHEEO,

especially GPU since it finishes later than DLA here. With

SHEEO in the blue line, AES utilizes the virtual and horizontal

shadow cycles in the pipeline to finish the power management

training and inference. On average, the VSC periods harvest

more than 70% resources, and the HSC periods harvest around

40% resources since Q-learning inference is lightweight and

agile. SHEEO rescues resource-constrained AES from ignor-

ing hetero-computing power within the pipeline and wasting

normal resources for power management functionalities.

Moreover, Figure 8 presents the harvesting ratio of SHEEO

under different scenarios. The harvesting ratio is defined as

the average improved utilization within shadow cycle periods

compared to that without SHEEO. SHEEO harvests 41%,

72%, 84.1%, and 88% VSC for different runtime variances

and 51% HSC on average. We have three key findings.

Firstly, the harvesting ratio is higher under high vehicle speed

scenarios. The tighter latency constraints leave shorter VSC

periods with processing the same perception tasks. Secondly,

the harvesting ratio is higher with more significant runtime

variance, which requires more frequent Q-table training. The

standard deviation under such scenarios is higher than that of

others since the duration of VSC periods is unstable. Thirdly,

the low vehicle speed and low runtime variance scenarios

have more shadow cycles, which presents opportunities for

heavier management functionalities. Overall, SHEEO makes

use of underutilized hetero-computing resources within normal

execution instead of occupying additional hardware resources

for continuous power management.
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Fig. 9: RQ2: SHEEO reduces the energy consumption of AES

execution under various scenarios.
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Fig. 10: RQ2: SHEEO optimizes energy consumption with

little cost of execution latency.

2) Efficiency (RQ2): With harvested shadow cycles,

SHEEO aims to provide a more agile and accurate power

management solution. Figure 9 presents the comparison of

energy consumption via different power management schemes.

The Oracle denotes ideally offline power management, making

optimal energy under all scenarios. All results are normalized

to the WAC baseline. On average, SHEEO outperforms WAC

and LBC by 9.4% and 3% with low runtime variance, where

the surrounding changes are less for adaptive management.

With high runtime variance, SHEEO outperforms the two

baselines by 21% and 16%, respectively, since the baselines

are ignorant of the changing conditions. In addition, we have

two findings. Firstly, with low runtime variance, power man-

agement with workload awareness is adequate for near-optimal

AES energy efficiency. Secondly, the best 27% improvement

of SHEEO happens with medium vehicle speed and high

runtime variance since the tight latency constraints under high

speed leave little power tuning space for SHEEO.

Moreover, Figure 10 presents the energy-delay product

(EDP) of SHEEO to further evaluate the efficiency. EDP

is mostly used as a more comprehensive metric to evaluate

both energy efficiency and performance. On average, SHEEO

outperforms WAC by 19.7% and LBC by 7.6%, respectively.

Combined with energy consumption results, we find that

SHEEO tends to sacrifice a little execution latency for better

energy efficiency. With high runtime variance, SHEEO can

adapt to the changes on the latency constraints, surrounding

changes, and workload complexity.

Further, we present the frequency tuning process as shown

in Figure 11 to investigate the energy efficiency improvements
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Fig. 11: RQ2: SHEEO tunes hardware frequency with

variability-awareness to optimize energy consumption.

of SHEEO. We modify the default power mode of Orin to

set 12 optional frequency levels for GPU and DLA. The

GPU frequency can be adjusted from 306MHz to 1.3GHz.

Figure 11 contains three different phases to represent realistic

AES execution environments. In the No RV phase, SHEEO

performs similarly to LBC since they both learn the AES

behaviors. In the Speed Changing phase with changing latency

constraints, SHEEO makes similar decisions with WAC but

tunes the frequency more to speed up or slow down the

execution more aggressively. In the Surrounding Changing
phase, there are more runtime variances, and SHEEO makes

more varied frequency tuning decisions to make the optimal

decision in the current status, resulting in reduced energy

consumption. However, the reduced frequency could sacrifice

a little execution latency for the pursuit of energy efficiency,

like iteration 7.

3) Overhead (RQ3): Another critical aspect of SHEEO is

the deployment overhead in resource-constrained AES. The

overhead contains two parts: training overhead and control

overhead. The training utilizes VSC, and the inference utilizes

HSC, which has no latency effect on the AES pipeline. As for

energy overhead, SHEEO consumes 4.5 mJ for each training

epoch and 1.7 mJ for each control process, corresponding to

less than 1% reduced energy. Baseline power management

schemes require normal resources and incur both latency

and energy overheads. Moreover, the memory requirement of

SHEEO is 1.3MB, translating to only 0.01% of the 32 GB

DRAM capacity of the evaluated COTS AES platform.

VI. DISCUSSION

A. Broader Utilization of Shadow Cycles

In this paper, we envision the underutilized shadow cycle

opportunity in AES to expand the resource visibility of sophis-

ticated designs on normal resources [1], [18], [20]. However,

continuous learning energy efficiency is just a suitable and

necessary management functionality that can be offloaded to

shadow cycles, and this opportunity could be seized by more

costly middleware in the resource-constrained AES. Except for

normal mission-critical tasks with the highest priorities, the

management tasks (e.g., power management, task mapping,

cloud synchronization) can be offloaded to the volatile VSC

and short-lived HSC. Therefore, SHEEO acts as an enlighten-

ing case for the broader utilization of shadow cycles.
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B. Foresight of Shadow Cycles

Shadow cycles of AES result from misalignment in nature,

which is a long-lasting topic in different system architectures.

As shown in Figure 12, the work-stealing mechanism aims

for unbalanced multi-core processors, and time-consuming

tasks could be offloaded to GPU in CPU-GPU architecture.

In resource-constrained AES, shadow cycles exhibit unique

properties and are properly utilized by SHEEO. Future plat-

forms will be equipped with more diverse domain-specific

accelerators (DSA), offering varied computing capabilities

for various tasks. With more heterogeneous hardware and

variable software, the potential of underutilized and misaligned

resources is even more worth exploring.

VII. CONCLUSION

This paper analyzes the potential of underutilized shadow

cycles in AES and the need for variability-aware energy

efficiency optimizers faced with runtime variance. We propose

SHEEO to exploit shadow cycles for continuously optimizing

energy efficiency. The evaluations show that SHEEO harvests

up to 88% shadow cycles and improves up to 39% energy effi-

ciency compared with SOTA works with negligible overheads.

We expect SHEEO could motivate broader resource visibility

for the management facilities of AES.
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