AsymServe: Demystifying and Optimizing LLM
Serving Efficiency on CPU Acceleration Units

Xinkai Wang?! [0000—0003—3764-8065] yiming Zhuansun'!, Chao
L;10000-0001—-6218—4659] Jip o Wapg![0000-0001-7260-0521] Xjaofeng

Hou![0000-0003—-4372=7851] T ingvy Sun!, Luping Wang?, and Minyi Guo®

! School of Computer Science, Shanghai Jiao Tong University, Shanghai, China
{unbreakablewxk, zsym2019, jing618, sunlingyul}@sjtu.edu.cn
{lichao, hou-xf, guo-my}@cs.sjtu.edu.cn
2 Alibaba Group, Hangzhou, China
chamu.wlp@alibaba-inc.com

Abstract. Current data centers are accommodating more Al-based work-
loads, especially large-language model (LLM) training and serving in re-
cent years. Given the limited count and significant energy consumption
of expensive GPUs, cloud providers tend to utilize more cost-efficient
processors for LLM serving, such as Intel scalable CPU equipped with
acceleration units AMX. To understand the improvements, bottlenecks,
and opportunities on this new platform, we first undertake a compre-
hensive characterization of LLM serving using AMX on two generations
of modern CPUs with various memory devices. Our characterization re-
veals that the hardware and software behaviors of LLM serving on CPU
are distinct from conventional cloud workloads and vary greatly. In this
paper, we propose AsymServe to maximize LLM serving efficiency on
scalable CPU platforms via handling software and hardware asymmetry.
It adjusts hardware allocation and software configurations adaptively to
maximize CPU performance-per-watt. Through extensive evaluation, we
show that AsymServe improves LLM serving performance. Specifically, it
achieves up to 1.71x faster first-token generation, 3.13x greater through-
put, and 11.09x better energy efficiency.

Keywords: LLM Serving - CPU Efficiency - Intel AMX.

1 Introduction

Recent advancement in Large Language Models (LLMs), such as GPT [1] and
LLaMA [17], marks a pivotal moment in the generative artificial intelligence (AT)
era. These trends have led to the widespread adoption of LLM in various do-
mains, ranging from personal assistants [3] to search engines [18]. With increas-
ing LLM queries from more users, accommodating LLM inference (i.e., LLM
serving) more efficiently grows in importance despite heavy-weight once-for-all
LLM training [34]. To meet the substantial demands of LLM serving, despite
high-performance Nvidia GPU, general, accessible, and cost-efficient CPUs are
emerging for cloud providers to deploy LLM serving [7].

2 Xinkai Wang, et al.

Using general-purpose CPUs for LLM serving seems counterintuitive, but
this choice is promising and necessary. Promisingly, modern scalable CPUs are
incorporating specialized acceleration units (AU), such as Intel AMX [20] and
ARM SVE [8] that accelerate key LLM matrix multiplication operations [13], and
larger memory capacities that support bigger models and higher batching sizes
without offloading, significantly closing the performance gap with GPUs [19].
The performance promise and better cost-efficiency makes CPU a competitive
alternative to GPUs for LLM serving [19, 24].

Given the performance improvements of LLM serving on CPU with AU [19,
13], the underlying bottlenecks are not well studied. We first undertake a com-
prehensive characterization of two generations of scalable CPUs and two types
of LLMs in order to understand the obscure inner asymmetry of LLM and AU.
Firstly, LLM serving on AU has asymmetric software behaviors due to unbal-
anced prefill and decode phases and sensitive configuration parameters, requiring
disaggregated and divergent management for maximal LLM performance. Sec-
ondly, LLM serving on AU exhibits asymmetric microarchitectural properties
from scalar functional units owing to its unique affinity on pipeline and uncore
resources, requiring precise and adaptive decisions for maximal CPU efficiency

To this end, we argue that optimizing LLM serving on CPU architectures
requires addressing system stack asymmetries, manifested through unbalanced
workloads and unique hardware units. We take the first to propose Asym-
Serve, an asymmetry-aware LLM serving framework designed to maximize CPU
efficiency with LLM performance guarantee. AsymServe bridges LLM token
scheduling and hardware allocation through two coordinated components. The
Offline Profiler jointly models software inference sensitivity and hardware crit-
icality into an Asymmetry Model. The Online Scheduler uses LAG analysis to
dynamically set the most energy-efficient configurations based on real-time con-
straints and the Asymmetry Model.

To evaluate AsymServe, we have implemented and evaluated it with various
workloads on scalable CPU platforms. Evaluation results show that AsymServe
achieves better CPU performance per watt efficiency by up to 11.09x compared
with state-of-the-art (SOTA) CPU LLM serving methods. Meanwhile, it out-
performs SOTA methods in guaranteeing LLM performance maximum 3.13x
throughput improvement and 1.71x latency reduction.

In summary, this paper makes the following contributions:

— Analysis: We comprehensively characterize LLM serving on CPU with ac-
celeration units in terms of software-layer and hardware-layer behaviors, bot-
tlenecks, and opportunities.

— Design: We introduce AsymServe, an asymmetry-aware LLM serving frame-
work designed to maximize CPU efficiency. We design cascaded offline and
online components to handle the asymmetric system stacks.

— Evaluation: We implement and evaluate AsymServe to prove its better
efficiency and performance compared to SOTA methods.

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 3

Physical L1/L2 | HTO | Physical L1-Inst S Porto ALU || AMX TMUL Accelerator TILECFG\
% | Por
corer Vet im0 ||| =25 |2 Regs ! 20 rego
o \
[Lastlevel Cache | [QAT Acce. |\ o | Portl FPU ‘ 2D regl
pes .
[KK) \|| Decoder o y \ *
[NUMA Memory 0 |‘.‘ & Regs \[\ 1024 BF16 ops/cycle 8 * 1KB

Fig. 1: Layout of scalable CPU with acceleration units.

2 Background and Related Work

2.1 Acceleration Units on Scalable CPU

To improve the performance of Al applications on CPU platforms, hardware
vendors have integrated domain-specific acceleration units (AU) into recent pro-
cessors, such as Intel Advanced Matrix Extensions (AMX) [20] and ARM Scal-
able Vector Extensions (SVE) [8]. It follows the single-instruction-multiple-data
(SIMD) paradigm and extends CPU from traditional vector extensions (e.g.,
AVX-512 in 2013 [23]) to matrix multiplication acceleration. Different from ded-
icated accelerators (e.g., QAT [31]) outside the pipeline for specific operations,
AUs on every physical core share the instruction flow and data access path with
normal functional units as shown in Figure 1. Every AMX unit contains an array
of eight 2-dimensional registers (TILECFG) with the size of 1KB and a matrix
multiply accelerator (TMUL) that performs 1024 ops per cycle. Compared to
expensive and limited GPU, scalable CPU equipped with AUs is becoming a
competitive option in the Al era for its generality and cost-efficiency [19, 28|.

Hardware asymmetry (i.e., heterogeneity) is widely studied for accelerating
domain-specific tasks. Regardless of accelerator designs [11] and CPU-accelerator
cooperation [29], there are three main asymmetries inside CPU. First is ISA
asymmetry that fully exploits heterogeneous ISA in one chip via design space
exploration [26] and execution migration [2]. Second is processor asymmetry
that adopts big. LITTLE architecture for both high performance and low power
consumption [21]. Third is component asymmetry, which considers specialized
functional units within the CPU as AsymServe does. Prior to AMX usage [13],
AVX usage has been studied and optimized via core specialization [5,4|. To the
best of our knowledge, AsymServe is the first to study the usage and optimization
of more asymmetric and complex AMX.

2.2 LLM Serving Systems

Large language models (LLM) have shown impressive achievements and great
potential in various creative tasks, leading the boom of the Al era [17,1]. Be-
sides once-for-all heavyweight LLM training, optimizing the performance and
efficiency of LLM serving (i.e., inference) is gaining more attention in both
academia and industry [15,7,16]. LLM inference contains two phases: 1) The
prefill phase processes all tokens of the input prompt simultaneously to generate
the first new token. 2) The decode phase uses the previously generated token

4 Xinkai Wang, et al.

i i 4 4
[LLM lIteration 1 [LLM Iteration 2 [(Decoding) i (Feed Forward) ',' " x
L) / LY <
. AN g Transformer }' % (Cadd&Norm Jf | -8 %\
o I love KV Token-1: Token-3: 2 RS o 8 % Dt
[] reading Cache | | Papers EOS 3 Transformer J3| (@ |(* Multi-head g K
~ - Attention S)
Tokens \\\ Embedding | [y Y MatMuls, ...
- ————————— B i i e >
Prefill Phase Decode Phase

Fig.2: LLM serving workflow at different granularities.

as input to produce the next tokens one by one until an end-of-sequence (EOS)
token is produced [34]. Two phases are relatively independent and have differ-
ent characteristics, motivating disaggregated optimizations [22, 33], as shown in
Figure 2. To generate every subsequent token, LLM iteration passes through re-
peated transformer layers composed of multiple blocks like multi-head attention.
The heaviest attention block contains multiple matrix-multiply and dot-product
operations on the query (Q), key (K), and value (V) matrices, which can be
accelerated using AUs on scalable CPU [13,19].

LLM serving systems are gaining popularity in both academia and industry.
Regardless of well-crafted system and framework designs like continuous batch-
ing [15] and prefill/decode disaggregation [22,33] on GPUs, LLM serving com-
munities are exploring other cost-efficient hardware platforms like FPGA [32]
and CPU [24]. Regarding CPU-based LLM serving, current solutions focus on
KV cache optimization [7] and usage of specialized units [19]. Compared to
GPU platform, LLM serving performance on modern CPUs is preliminarily stud-
ied [19,13]. To the best of our knowledge, AsymServe is the first to characterize
CPU-based LLM serving asymmetry and optimize its efficiency systematically.

3 Performance Analysis of LLM with CPU AUs

3.1 Characterization Methodology

Hardware: In Sections 3 and 4, we characterize LLM serving on two commercial
off-the-shelf CPU platforms: Intel 4th Sapphire Rapids (SPR) [20], 6th Granite
Rapids (GNR) [10] scalable CPUs released in 2022 and 2024, respectively. The
hardware specifications are shown in Table 1. The main differences are two-fold:
(1) GNR has better AMX support and FP16 precision; (2) our SPR systems use
DDR (SPR-DDR) and DDR+HBM (SPR-HBM) memory configurations, while
GNR system adopts MCR memory (GNR-MCR). To avoid inter-node memory
access cost, we only use one socket (48 cores) to serve LLM on SPR-DDR and
SPR-HBM. On GNR-MCR, we use all 120 cores.

Software: To deploy LLM serving on CPUs using AMX, we use Intel xFaster-
Transformer (xft) [7] framework with the latest AMX support. We use xft to
serve the open-sourced llama-2-7b [17] and llama-2-13b. To study the cascaded
yet different phases (prefill and decode) in LLM serving [22, 33], we mimic them
in xft with varying batch sizes, ranging from 1 to 32. Prefill has an input sequence

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 5

Table 1: Hardware specifications of evaluated CPUs.

SPR-DDR SPR-HBM GNR-MCR
Generation Sapphire Rapids Sapphire Rapids Granite Rapids
CPU Xeon 8475B Xeon 9468 Xeon 6982P-C
#cores / sockets 48 / 2 48 / 2 120 / 1
Frequency 2.7 GHz 2.1 GHz 2.8 GHz
L1-I / core 32 KB 32 KB 64 KB
L1-D / core 48 KB 48 KB 48 KB
L2 / core 2 MB 2 MB 2 MB
Shared LLC 97.5 MB 105 MB 504 MB
Memory DDR5 1TB DDR5 1TB+HBM 128GB DDR5 768GB
Memory BW 614 GB/s 973 GB/s 845 GB/s
o 10 1.0 1.0 1.0
[sPR-DDR 2 08 0.8 0.8 038
> 06 0.6 0.6 0.6
O sPR-HBM £ 04 0.4 0.4 0.4
] GNR-MCR 2 02 0.2 0.2 0.2
0.0

0.0 0.0 0.0
7B-TTFT 13B-TTFT 7B-TPOT 13B-TPOT

Fig. 3: Prefill and decode performance across models and platforms.

length of 512 and an output sequence length of 1, while the input and output
for decode are both 512. As previous work [33], we evaluate three representative
LLM applications with distinct input-output characteristics: (1) ChatGPT-like
chatbot with 512-token input and 200-token output; (2) Cursor-like code comple-
tion with 128-token input and 98-token output; (3) summarization with 2016-
token input and 32-token output. We use Linux perf [6], pmu-tools [14], and
pqos [9] tools to characterize LLM and CPU behaviors.

Metrics: To measure the performance of LLM serving, we select various metrics
widely used in previous studies [19, 34]. For prefill performance, we use time-to-
first-token (TTFT), indicating the time to generate the first token. For decode
performance, we use time-per-output-token (TPOT), indicating the average time
taken to generate subsequent tokens. Also, the throughput of the two phases is
measured as generated tokens per second. Different metrics are critical for various
use cases of LLM serving [34].

3.2 Decomposed LLM Serving Performance Investigation

We benchmark the performance of the phases using varying model sizes (7B
and 13B) of llama-2 across the three platforms. We use task chatbot and set
the batch size as 16. Figure 3 shows multidimensional performance variations in
LLM serving with the chatbot task and batch size 16.

Our performance decomposition analysis reveals three critical factors affect-
ing LLM serving efficiency: phase characteristics, model size, and hardware re-

6 Xinkai Wang, et al.

80 30 °
[P TTFT 70 5 ===0 - o
—=1D: TPOT ¥60 | o0---0-—-=0-"-9] g
(] . O 20 =
—1D: Throughput £ 50 Memory bandwidth bound > - S
= increases. - o
—~— P:amx_usage g 40 RS -0 _ -0~ __ 5 &
) 2 30 = =-o 103
#— Dramx_usage < 20 AMX usage increases. %
= 0 =P:mem_bw_bound| £ 1o A 5 ¢
g £
— O =D: mem_bw_bound 0 L= O A o 2

1 2 4 8 16 32

Batch Size

Fig. 4: Influence of batch size on LLM serving with AMX.

source configurations. Prefill and decode are two processing phases in LLM serv-
ing, each with different characteristics. The prefill phase initializes contextual
states and processes input sequences, while the decode phase iteratively gen-
erates output tokens. Though both phases are memory-bound due to their re-
liance on the model, their different compute patterns affect the performance.
In the prefill stage, the full-sequence operations make the phase more compu-
tationally intensive, which results in comparable performance between SPR-
DDR and SPR-HBM platforms with similar computing resources. In the decode
stage, autoregressive token generation makes the performance more suscepti-
ble to memory bandwidth. Therefore, as Figure 3 shows, SPR-HBM improves
TPOT performance compared with SPR-DDR. Model size also affects LLM serv-
ing performance. Larger models require more computing resources and consume
greater memory bandwidth. Hardware resources, mainly computing and band-
width, critically influence serving performance. Table 1 shows that SPR-HBM
exceeds SPR-DDR in bandwidth, while GNR-MCR surpasses SPR-HBM with
enhanced computational power. Figure 3 demonstrates that increased computing
and bandwidth resources effectively accelerate LLM serving.

Findings #1: The decomposed two LLM serving phases show distinct charac-
teristics, mecessitating separate consideration and optimization.

3.3 Impact of Software Configurations on LLM Performance

Impact of batch size on AMX usage To accommodate LLM serving, batch
size, the number of parallel inputs for LLM, is a crucial hyperparameter to
optimize LLM serving performance. Continuous batching with varying batch
sizes achieves better performance [15], but how batch size impacts AMX us-
age is understudied. Despite lower cache misses, higher core utilization, and
more load/store instructions with higher batch sizes [19], we further compare
the performance and AMX usage of prefill and decode phases in Figure 4. The
performance is normalized to batch size=1. Obviously, a larger batch size leads
to better throughput but worse per-token latency. We find that AMX performs
more computations under larger batch sizes due to larger matrix dimensions and
more multiply computations, especially for the prefill phase.

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 7

[code Completion [chatbot [0 Summarization

20 2.0
— =
w 15 O 1.5
t:-10 &‘10]
3 7
S s Sos

0 0.0

bs=1 bs=4 bs =8 bs=1 bs=4 bs =8

Fig. 5: Influence of sequence length on LLM serving performance.

Impact of sequence length on performance Sequence length, the number
of input tokens for LLM, is a critical parameter in task design. Longer input
sequences require significantly more compute resources during the prefill phase,
whereas the impact on the decode phase remains relatively marginal. Figure 5
illustrates how TTFT and TPOT evolve across three workloads on the SPR-
DDR platform as the batch size increases from 1 to 8, where the llama-2-7b
model was employed. The prefill phase demonstrates near-linear TTFT scaling
with sequence length, while TPOT in the decode stage remains relatively stable.

Findings #2: Software configuration impacts system resource utilization in
LLM serving, resulting in observable performance variations.

4 In-depth Resource Sensitivity Analysis

4.1 Impact of Microarchitectural Resources

With an understanding of AU usage in LLM serving, we further analyze the
resource bottlenecks from the microarchitectural perspective. We use the top-
down analysis methodology [30] with a concentration on AU-related insights
rather than general cycle/function distributions in prior works [12, 25]. This sec-
tion investigates AU’s affinity for various resources and where AU is bounded.

Frontend resources are over-supplied Figure 6 shows the CPU cycle distri-
butions of two phases on three platforms, compared with mcf benchmark from
SPECCPU and ads services from Google [12,25]. Frontend bound (in blue) in-
cludes stall cycles at the L1 instruction (L1-I) cache, fetch unit, and decoder.
LLM serving on AMX follows SIMD paradigm with a smaller instruction work-
ing set and fewer i-cache misses, leading to significantly lower fetch latency than
before (~ 5% stall cycles due to fetch latency [12]). As for fetch bandwidth, con-
tention on the decoded pop cache tma_ dsb is more severe than the legacy decode
pipeline tma_ mite, but fetch bandwidth is excessive for AMX usage. The prefill
and decode phases behave similarly at the frontend. Meanwhile, SPR is hardly
bounded at the frontend but AMX on GNR requires the frontend resources

8 Xinkai Wang, et al.

OHeavy Ops SPR-DDR: D [[]] 77 [1o
OlLight Ops SPR-DDR: P [[3[] 70 [22
@mBranch Mispredict | SPR-HBM: D []4][] 71 [29
OMachine Clears SPR-HBM:P [[8 [8 | 50 [22
OFetch Latency GNR-MCR: D[] 71 | 34
OFetch Bandwidth GNR-MCR: P [[5 [] 55 [35
O Memory Bound SPEC: mcf 16 Bl 9] 70
O Core Bound Google: ads 0 . 20 [63
0% 20% 40% 60% 80% 100%

Fig.6: Cycle distributions for LLM serving on AMX. Yellow, gray, blue, and
green categories are retiring, bad speculation, frontend bound, and backend
bound, respectively.

3.0 2.0 — —
O 12cores | I o 515
O 24 cores | 10 10
g e | 200 LU00m 10om [am] es LLNAA 000 100
o U 5 U
O 48cores | = Code Summarization ~ Chatbot ~ Z Code Summarization Chatbot
Completion Completion

Fig. 7: Influence of multicore scaling on LLM serving performance.

more due to improved backend resources. Compared to traditional workloads
using general units, AU has a much lower affinity for frontend resources. The
over-supplied frontend resource for LLM serving using AUs is wasted and could
be aggressively shared to co-running workloads.

Backend resources are overloaded Despite abundant frontend resources
for LLM serving, backend resources are under strain and restrict performance.
As shown in Figure 6, the backend bound (in green) includes stall cycles at
execution ports (core bound) and memory access path (memory bound). In
both prefill and decode phases, backend bound dominates the majority of slots.
However, within the backend bound category, the two stages exhibit distinct
characteristics. The decode phase reports higher memory bound compared to
the prefill phase, indicating increased memory demands during this stage.

Findings #3: Different microarchitectural bottlenecks of AU running LLM
serving present intra-AU resource asymmetry on frontend and backend resources.
4.2 Impact of Multicore Scaling

The core count represents the available AU resources for LLM serving. We in-
directly control the actual core usage by adjusting the number of threads in xft

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 9

Asy ric LLM Requil ts it ' Asyms A — .

| Online Scheduler | Asymoerve Offline Profiler !

@) LLM Inference Queue ! o ror A ! ! " !
------------) —emmemeeer, 1 oken Analyzer] LLM Profiler |

I Reg-1 { Prompt_} ” Reg-2{ Token | | N e !
: ! SLO LAG Y Y Phase Batchin I

i Model LI_] Ll_g] !

Asymmetric Hardware Allocation i l 1. LLM Config. <—l—| !

! 2. Core Config. - 1

et |B0 D oecose | BOEE] L & === sy) |
Pool Pool i | Hardware Decider j Resource Profiler 1
1 1

[memory | [™emory ||| T ————————_.! Lo]

Fig. 8: Design overview of AsymServe.

inference. Figure 7 shows the performance of three tasks under llama-2-7b with
a batch size of 8 as core count increases from 12 to 48. On the whole, higher core
counts improve both prefill and decode performance, with prefill showing more
significant gains. Interestingly, in some decode scenarios (like code completion
and summarization in Figure 7) and certain prefill cases (not shown in the fig-
ure), LLM serving performs better using 3/4 of the available cores rather than
all cores. This occurs because fewer cores reduce bandwidth contention between
different cores, improving AU utilization and overall efficiency.

Findings #4: Due to high contention for non-AU resources in LLM serving,
greedy usage of AU can lead to its underutilization.

5 Design of AsymServe

Based on the analysis above, we argue that optimizing LLM serving on acceler-
ation units must consider the asymmetric system stacks. As shown in Figure 8,
the asymmetric LLM requirements and hardware allocation require the cloud
providers to consider and optimize jointly for better efficiency. Therefore, we
propose AsymServe, an asymmetry-aware LLM serving framework designed
to maximize the efficiency of the CPU with acceleration units. It operates at
the operation system layer to determine the optimal configurations for a given
serving service-level-objective (SLO).

AsymServe contains two cooperative components. The Offiine Profiler works
in the background to understand the software inference behaviors with LLM
Profiler and hardware resource allocation with Resource Profiler. The profiles
model the impact of LLM and hardware configurations on inference performance,
synthesized into a unified Asymmetry Model. The key module of AsymServe is
Online Scheduler that makes an allocation decision in real-time for a newly
submitted request. It determines real-time execution lag with Token Analyzer
and selects proper resources that can maximize CPU efficiency with Hardware
Decider based on the Asymmetry Model.

10 Xinkai Wang, et al.

5.1 Offline Profiling

LLM profiler To model the LLM serving performance with varied software
configurations, the LLM Profiler builds a performance profile for every serv-
ing parameter individually. For every serving request of LLM m, it quantifies
the performance with four-dimensional software features. The input features in-
clude model size s, execution phase p, input length ¢, and batch size bs. The
performance indicators for prefill and decode phases are TTFT and TPOT, re-
spectively. In order to improve the accuracy and reduce the profiling overhead,
we discretize the input length and batch size with discrete values. Specifically,
AsymServe divides the space of features into multiple buckets and then takes
the upper bound of the bucket as the final value.

Resource profiler To model the LLM serving performance with varied resource
usages, the Resource Profiler captures LLM affinity on acceleration units and
memory selections. Every LLM configuration further quantifies the performance
with five more resource dimensions. The input features include the number of
cores n, core frequency f, memory device m, cache allocation ¢, and memory
bandwidth allocation mb. We record the 50% mean performance p,,cqn and 90%
tail performance py,;; of repeated inferences to reduce model biases. The LLM
serving performance models the software and hardware features: ppean, Prait =
fm(s,p,4,bs,m, f,m,c,mb). Similarly, we use discrete resource allocation buckets
for overhead reduction and further adopt transfer learning between models to
obtain the execution performance agilely.

5.2 Online Scheduling

Phase-aware Token Analysis AsymServe adopts token SLO for prefill and
decode phases. For prefill tokens, shorter TTFT makes the serving system more
responsive. We simply use first-come-first-serve (FCFS) to schedule prompts
with the batch size of 1. The deadline for prefill tokens is set as drrrr — twait,
where dprpr is the TTFT SLO (e.g., 1s) and tyq¢ is the request waiting time.

For abundant decode tokens in LLM serving requests, AsymServe tracks the
performance of tokens at runtime to optimize CPU efficiency at token granu-
larity. We adopt LAG analysis to determine the performance and resource re-
quirements of the next batch of tokens. We quantify the relationship between the
partial execution time at time ¢ of serving request ¢ (e;) and its relative deadline,
denoted as LAG;, as shown in Equation 1.

LAGl (tOkenv T’l(t)) = Z (dTPOT - etoken) (1)
token€T;(t)

in which T;(¢) is the tokens of request ¢ that have completed by time ¢. For token
token € T;(t), drpor is set as the TPOT SLO (e.g., 100ms), and e;oken is the
recorded execution time for token ¢, respectively. Since LAG indicates how far
behind (LAG < 0) or ahead (LAG > 0) each serving request is, the resource
allocation can be adjusted accordingly for faster or slower generation.

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 11

SLO-aware Hardware Decider AsymServe optimizes hardware allocation for
LLM serving by dynamically matching resources to real-time performance tar-
gets (SLO) while maximizing performance-per-watt efficiency. The system eval-
uates processing capabilities through tokens-per-second metrics and calculates
CPU power consumption using dynamic measurements. Deployment nodes are
initially selected based on memory devices capable of meeting minimum SLO re-
quirements. For the compute-intensive prefill phase, all available processor cores
are utilized, while the decode phase activates only cores necessary to satisfy
runtime SLO, leaving surplus cores idle. Finally, cache allocation and memory
bandwidth are tuned using prior asymmetry modeling data, achieving precise
resource allocation without additional waste.

6 Evaluation

6.1 Experiment Methodology

Implementation We implement a prototype of AsymServe based on xFaster-
Transformer [7]. The hardware platforms, LLM serving configurations, and per-
formance metrics are similar to Section 3.1. As for SLO settings, we set diverse
performance SLOs for each application [33]: (1) chatbot: TTFT SLO=400 ms,
TPOT SLO=80 ms; (2) code completion: TTFT SLO=125 ms, TPOT SLO=200
ms; (3) summarization: TTFT SLO=3s, TPOT SLO=150 ms. These SLOs re-
flect real-world requirements for different LLM-powered scenarios.

Baselines We compare AsymServe with three baselines: one state-of-the-art
CPU LLM serving method, Fzclusive, that uses all hardware resources for LLM
serving exclusively. Two AsymServe variants to validate the decomposed im-
provements: AsymServe-H is AsymServe only with hardware asymmetry, i.e.,
allocating hardware resources considering AU profiles and setting software con-
figurations same with the Ezclusive scheme. AsymServe-S is AsymServe only
with software asymmetry, i.e., adjusting software configurations considering LLM
SLOs and allocating hardware resource same with the Fzclusive scheme. Asym-
Serve considers the two-dimensional profiles jointly at runtime.

6.2 Evaluation Results

Performance We begin by evaluating the performance of AsymServe. Our
LLM serving evaluation uses three key metrics: TTFT, TPOT, and throughput
from Section 3.1. We conducted comprehensive testing using our experimental
platform across four schemes, employing various tasks, different LLM models,
and multiple software/hardware configurations. The experimental results from
testing the llama-2-7b model on GNR-MCR are shown in Figure 9. In this figure,
the three tasks are labeled using the following abbreviations: code completion
(CC), summarization (Summ), and Chatbot (Chat).

During the prefill phase, baseline performance often violates SLOs (in code
completion and chatbot tasks). To address these violations, we experiment with

12 Xinkai Wang, et al.

| [Exclusive [J AsymServe-H [0 AsymServe-S [0 AsymServe |
2.0 1.0 5
— Ta./get:Approafh sLo — 08 Trade latency for higher - Trade throughput for
TN 1.5 without exceeding. 8 = efficiency. . 3 hardware resources.
T, o6 Eg3
=2 0 S T o2 H H S1 H
00 ” ” oo Lomlhl 1 o Lol ol [n
cc Summ Chat cc Summ Chat cCc Summ Chat
Fig.9: Performance of AsymServe.
1 11.09x
O Exclusive Higher is better.
5 E 3 7.61
DAsymServe-H | § s 5 6.34x 2
S <
DAsymServe-s | & 2 1 |—| 4.46x
e A I s 1 P
Code Summarization Chatbot Average
Completion

Fig. 10: Energy efficiency of AsymServe.

AsymServe-H, AsymServe-S, and AsymServe. When meeting SLO requirements,
the software solution AsymServe-S occasionally achieves lower latency than Asym-
Serve because AsymServe strategically allows increased latency (still below SLO
limits) to free up extra resources. Across three tested scenarios in Figure 9,
AsymServe achieves up to 1.73x TTFT improvement compared to the baseline.

During the decode phase, the baseline typically shows TPOT values well
below SLO limits. As shown in Figure 9, the hardware approach AsymServe-
H saves resources but reduces throughput because of limited software flexibil-
ity. AsymServe-S maximizes throughput but occupies all hardware resources.
AsymServe effectively balances these extremes and dynamically adjusts resource
allocation to improve throughput while ensuring SLO compliance and preserv-
ing system resources. In this stage, AsymServe achieves 2.23x to 3.13x higher
throughput compared to the baseline.

Energy efficiency As discussed, AsymServe not only enhances LLM serving
performance but also releases redundant hardware resources, making it more
energy-efficient than the other three schemes. We define energy efliciency in LLM
serving as the ratio of throughput to power consumption. Figure 10 demonstrates
the energy efficiency across different tasks on the GNR-MCR platform running
the llama-2-7b model. By optimizing batch sizes and reducing allocated comput-
ing cores, AsymServe effectively lowers energy consumption per token, achieving
4.46x to 11.09x (average 7.61x) energy efficiency improvements.

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 13

7 Discussion and Future Work

In this paper, we preliminarily demystify and optimize LLM serving efficiency
on modern CPU with acceleration units, Intel AMX. However, there are three
limitations leaving for future work.

Firstly, larger and more diverse LLMs are unexplored. We study the behav-
iors of standard small-sized LLaMA models, while leaving the recent Mixture of
Experts (MoE) models with larger memory requirements and variable quantiza-
tion techniques [34] as future work. Secondly, CPU microarchitectural resource
are leaving static. We adjust the hardware resources with off-the-shelf technolo-
gies, while the LLM distinct resource demands at the microarchitectural layer
could be grasped with more flexible architecture optimizations [26]. Thirdly,
more cost-efficient sharing LLM deployment is promising. We optimize LLM
serving efficiency without any colocation, which is common practices in datacen-
ters. In the future, we are going to exploiting the underutilized resources of CPU
LLM serving to further improve resource utilization and overall efficiency [27].

8 Conclusion

The scalable CPU equipped with acceleration units is becoming a more general
and cost-efficient option for LLM serving. We extensively characterize LLM serv-
ing using AMX to understand its asymmetric software behaviors and hardware
demands. Based on our insights, we design AsymServe, an asymmetry-aware
LLM serving framework to handle unbalanced LLM serving on specialized func-
tional units. Through extensive evaluations, AsymServe demonstrates enhanced
LLM serving performance, achieving maximum improvements of 1.71x in time-
to-first-token latency, 3.13x in throughput, and 11.09x in energy efficiency.

Acknowledgments. We sincerely thank all the anonymous reviewers for their valu-
able comments that helped us to improve the paper. This work is supported by the
National Natural Science Foundation of China (No. U23A6007) and an Alibaba Re-
search Grant. The corresponding authors are Chao Li and Luping Wang.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. DeVuyst, M., Venkat, A., Tullsen, D.M.: Execution migration in a heterogeneous-
isa chip multiprocessor. In: Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and Operating Systems. pp.
261-272 (2012)

3. Google: Assistant with bard: A step toward a more personal assistant. Available:
https://bit.ly/4h3Pti8, 2024

4. Gottschlag, M., Brantsch, P., Bellosa, F.: Automatic core specialization for avx-512
applications. In: Proceedings of the 13th ACM International Systems and Storage
Conference. pp. 25-35 (2020)

14

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

Xinkai Wang, et al.

. Gottschlag, M., Machauer, P., Khalil, Y., Bellosa, F.: Fair scheduling for avx2 and
avx-512 workloads. In: 2021 USENIX Annual Technical Conference (USENIX ATC
21). pp. 745758 (2021)

. Gregg, B.: perf examples. Available: https://www.brendangregg.com/perf.html,

2024

He, P., Zhou, S., Huang, W., Li, C., Wang, D., Guo, B., Meng, C., Gui, S., Yu, W.,

Xie, Y.: Inference performance optimization for large language models on cpus. In:

ICML 2024 Workshop on Foundation Models in the Wild (2024)

Iliescu, D.A., Petrogalli, F.: Arm scalable vector extension and application to ma-

chine learning. Retrieved October (2018)

Intel: Intel®) rdt software package. Available: https://github.com/intel/intel-cmt-

cat, 2024

Intel: Intel unveils future-generation xeon with robust performance and efficiency

architectures. Available: https://bit.ly /4gobDeL, 2024

Jouppi, N., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil, N., Subrama-

nian, S., Swing, A., Towles, B., Young, C., Zhou, X., Zhou, Z., Patterson, D.A.: Tpu

v4: An optically reconfigurable supercomputer for machine learning with hardware
support for embeddings. In: Proceedings of the 50th Annual International Sympo-

sium on Computer Architecture. ISCA 23 (2023)

Kanev, S., Darago, J.P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G.Y.,

Brooks, D.: Profiling a warehouse-scale computer. In: Proceedings of the 42nd

annual international symposium on computer architecture. pp. 158-169 (2015)

Kim, H., Ye, G., Wang, N., Yazdanbakhsh, A., Kim, N.S.: Exploiting intel®) ad-

vanced matrix extensions (amx) for large language model inference. IEEE Com-

puter Architecture Letters (2024)

Kleen, A.: Intel pmu profiling tools. Available: https://github.com/andikleen/pmu-

tools, 2024

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C.H., Gonzalez, J., Zhang,

H., Stoica, I.: Efficient memory management for large language model serving with

pagedattention. In: Proceedings of the 29th Symposium on Operating Systems

Principles. pp. 611-626 (2023)

Liu, J., Tang, P., Hou, X., Li, C., Heng, P.A.: Loraexit: Empowering dynamic mod-

ulation of llms in resource-limited settings using low-rank adapters. In: Findings

of the Association for Computational Linguistics: EMNLP 2024. pp. 9211-9225

(2024)

Meta: Introducing llama 3.2. Available: https://www.llama.com/, 2024

Microsoft: Introducing the new bing. the ai-powered assistant for your search.

Available: https://bit.ly/3DHVp26, 2024

Na, S., Jeong, G., Ahn, B.H., Young, J., Krishna, T., Kim, H.: Understanding

performance implications of llm inference on cpus. In: 2024 IEEE International

Symposium on Workload Characterization (IISWC). pp. 169-180. IEEE (2024)

Nassif, N., Munch, A.O., Molnar, C.L., Pasdast, G., Lyer, S.V., Yang, Z., Mendoza,

O., Huddart, M., Venkataraman, S., Kandula, S., et al.: Sapphire rapids: The next-

generation intel xeon scalable processor. In: 2022 IEEE International Solid-State

Circuits Conference (ISSCC). vol. 65, pp. 44-46. IEEE (2022)

Padoin, E.L., Pilla, L.L., Castro, M., Boito, F.Z., Alexandre Navaux, P.O., Méhaut,

J.F.: Performance/energy trade-off in scientific computing: the case of arm big.

little and intel sandy bridge. IET Computers & Digital Techniques 9(1), 27-35

(2015)

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

AsymServe: LLM Serving Efficiency on CPU Acceleration Units 15

Patel, P., Choukse, E., Zhang, C., Shah, A., Goiri, I., Maleki, S., Bianchini,
R.: Splitwise: Efficient generative llm inference using phase splitting. In: 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). pp. 118-132. IEEE (2024)

Reinders, J.R.: Intel® avx-512 instructions. Available: https://bit.ly/3DbYbfL,
2017

Shen, H., Chang, H., Dong, B., Luo, Y., Meng, H.: Efficient llm inference on cpus.
arXiv preprint arXiv:2311.00502 (2023)

Sriraman, A., Dhanotia, A.: Accelerometer: Understanding acceleration opportu-
nities for data center overheads at hyperscale. In: Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. pp. 733-750 (2020)

Venkat, A., Tullsen, D.M.: Harnessing isa diversity: Design of a heterogeneous-isa
chip multiprocessor. ACM SIGARCH Computer Architecture News 42(3), 121-132
(2014)

Wang, X., He, H., Li, Y., Li, C., Hou, X., Wang, J., Chen, Q., Leng, J., Guo, M.,
Wang, L.: Not all resources are visible: Exploiting fragmented shadow resources in
shared-state scheduler architecture. In: Proceedings of the 2023 ACM Symposium
on Cloud Computing (SoCC). pp. 109-124 (2023)

Wang, X., Hou, X., Li, C., Li, Y., Liu, D., Xu, G., Yang, G., Zhang,
L., Wu, Y., Yuan, X., Chen, Q., Guo, M.: Exist: Enabling extremely effi-
cient intra-service tracing observability in datacenters. In: Proceedings of the
30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS). p. 355-372 (2025).
https://doi.org/10.1145/3676641.3716283

Wang, X., Li, C., Sun, L., Lyu, Q., Hou, X., Leng, J., Guo, M.: Sheeo: Continuous
energy efficiency optimization in autonomous embedded systems. In: 2024 IEEE
42nd International Conference on Computer Design (ICCD). pp. 496-503 (2024).
https://doi.org/10.1109/ICCD63220.2024.00082

Yasin, A.: A top-down method for performance analysis and counters architecture.
In: 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 35-44. IEEE (2014)

Yuan, Y., Wang, R., Ranganathan, N., Rao, N., Kumar, S., Lantz, P., Sanjeepan,
V., Cabrera, J., Kwatra, A., Sankaran, R., et al.: Intel accelerators ecosystem:
An soc-oriented perspective: Industry product. In: 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). pp. 848-862. IEEE
(2024)

Zeng, S., Liu, J., Dai, G., Yang, X., Fu, T., Wang, H., Ma, W., Sun, H., Li, S.,
Huang, Z., et al.: Flightllm: Efficient large language model inference with a com-
plete mapping flow on fpgas. In: Proceedings of the 2024 ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. pp. 223-234 (2024)
Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin, X., Zhang, H.: Dist-
serve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In: 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). pp. 193-210 (2024)

Zhou, Z., Ning, X., Hong, K., Fu, T., Xu, J., Li, S., Lou, Y., Wang, L., Yuan, Z., Li,
X., et al.: A survey on efficient inference for large language models. arXiv preprint
arXiv:2404.14294 (2024)

