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Abstract

The complexity of online applications is rapidly increasing,

bringing more sophisticated performance anomalies in to-

day’s cloud datacenter. To fully understand application be-

haviors, we should obtain both inter-service communication

data via RPC-level tracing and intra-service execution traces

via application-level tracing to precisely reason about event

causality. However, the average time overhead of existing

intra-service tracing schemes on the traced applications is

generally about 5-10%, possibly reaching 18% in the worst

case. To realize practical intra-service tracing in shared and

stressed datacenters, one must achieve extreme tracing effi-

ciency with an overhead at the per-mille level.

In this work, we present EXIST, an extremely efficient

intra-service tracing system based on off-the-shelf hardware

tracing capabilities. EXIST consists of three cooperative mod-

ules to pursue optimal trade-offs towards extremely low

overhead. Firstly, it identifies and eliminates costly tracing

control operations to guarantee the performance of the ob-

served applications. Secondly, it allocates limited trace buffer

space dynamically based on application status. Thirdly, it
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optimizes the trace coverage with cluster-level orchestra-

tion. We implement and evaluate EXIST on benchmark and

real-world applications thoroughly. EXIST achieves 2-10× ef-

ficiency improvements compared to existing techniques and

over 90% accuracy compared to exhaustive tracing reference.

With extremely efficient intra-service tracing observability,

we can achieve more explainable datacenter management.
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1 Introduction

In modern datacenters, emerging intelligent software, like

AI-powered recommendation [3] and conversation [57] ap-

plications, involve massive inner complexity and outer inter-

actions that need to be understood for performance anom-

alies [58, 67]. It is challenging to maintain stable perfor-

mance in production systems since various unscheduled
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Figure 1. Efficiency and accuracy comparison of popular

observation methods.

events can occur, such as hardware faults (e.g., fail-slow com-

ponents [32]) and system traffic overload (e.g., metastable

failures [34]). It forces cloud providers to devote significant

engineering resources to explain the causality that led to,

and recover from, the anomalies [69].

Understanding performance anomalies occurring on com-

plex applications is challenging, owing to insufficient chrono-

logical runtime information. As shown in Figure 1, statistical

observation methods like Flamegraph [31] mainly collect

statistical metrics and sample periodically, termed statistical

observability [26, 33]. They efficiently depict the statistics

around the anomaly, which gets the average characteristics

(e.g., proportions of functions GFP) but fails to infer causal-

ity. In contrast, chronological observability via tracing (i.e.,

tracing observability) can uncover the cause-effect of system

events, which is crucial for explainable performance debug-

ging and optimization [68]. Currently, efficient inter-service

tracing like Zipkin [100] that captures RPC-level communi-

cation (e.g., execution time of services ABC) has been widely

deployed to locate culprit services [26, 42, 79].

Faced with more complex applications, intra-service trac-

ing (IST) is expected to dig deeper into application-level

causality. IST collects chronological function and instruction

flows within a single service. Figure 1 depicts a culprit ex-

ample, where function Get after Flush takes abnormally long

and blocks the program. With chronological intra-service

traces, we can pinpoint the anomalous execution sequence

instead of just observing the abnormal execution time of the

culprit service or the identical function distributions. Current

IST methods mainly rely on kernel and user instrumentation,

which embed runtime tracepoints to produce chronological

traces [1, 49, 66, 68, 88]. Admittedly, they are widely used

by software developers for performance debugging, but they

intrude software execution to obtain per-application traces

with varied accuracy and efficiency [68].

To date, achieving such intra-service tracing observabil-

ity in datacenters faces two efficiency challenges. Firstly,

shared execution environments degrade intra-service trac-

ing efficiency. Tracing applications co-located on the same

hardware [62, 81] often induces higher overhead than trac-

ing applications running alone because it requires additional

costly kernel operations. Secondly, stressed execution envi-

ronments further worsen the negative effect of intra-service

tracing overhead. During periods of resource saturation

when most performance anomalies occur [96, 99], previously

tolerable single-digit-range (i.e., 1-10%) overhead of popular

tracing tools [1, 49] can significantly slowdown the traced

applications. Therefore, we argue that intra-service tracing

requires a transition to per-mille level (i.e., ≤ 1%) overhead

for large-scale deployment.

In addition to the pursuit of per-mille level efficiency, it is

crucial for IST system to balance space overhead and data

coverage. Emerging processors provide low-overhead and

high-accuracy hardware tracing capabilities [6, 37, 55], but

there is an inherent trade-off between time efficiency, space

overhead, and data coverage in hardware tracing abstrac-

tions. Prior works that leverage hardware tracing for various

downstream tasks, such as REPT [19, 28] for reverse debug-

ging and JPortal [102] for intra-service tracing, all fall short

of extreme time efficiency as shown in Figure 1. To build a

successful intra-service tracing system, we not only should

pursue per-mille level time efficiency but also better utiliza-

tion of the limited memory space for trace buffers and better

tracing data coverage.

In this work, we propose EXIST, an Extremely Efficient

Intra-Service Tracing system that exploits off-the-shelf hard-

ware tracing and targets shared and stressed clusters. At

the node level, EXIST is designed for extreme intra-service

tracing time efficiency while also optimizing space overhead

and data coverage. At the cluster level, EXIST is flexibly

orchestrated in a cloud-native manner and easily accessed

through a configuration interface. The collected instruction

traces are automatically synthesized into human-readable

application behaviors for on-call engineers and developers,

enabling the deployment in large-scale clusters.

More specifically, EXIST comprises three cooperative com-

ponents for intra-service tracing. Firstly, the tracing controller

extends the system kernel to eliminate the critical control

operations of hardware tracers that cause performance slow-

down. It captures the just-in-time scheduled processors to

minimize costly register operations in conventional designs,

reducing them from the number of context switches to the

number of processing cores during the tracing period. Sec-

ondly, thememory allocator fully utilizes the limited memory

space to store more useful traces by adjusting the traced core-

set and the per-core buffer based on application usage infor-

mation. Thirdly, the coverage optimizer extends the trace data

coverage by selecting proper tracing periods and repetitions

in the cluster to maximize tracing cost-efficiency.

To evaluate EXIST thoroughly, we implement and deploy

it in Alibaba clusters, tracing both standard benchmarks and

real-world cloud applications across diverse scenarios. Our

results demonstrate significant improvements in tracing ef-

ficiency by ten times compared to current tracing methods.
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Also, EXIST induces negligible degradation in the perfor-

mance of the monitored applications. Furthermore, EXIST

achieves over 90.2% tracing accuracy across various appli-

cations. EXIST greatly enhances our insights into clusters,

and we provide a realistic case study based on EXIST for

understanding real-world applications.

In summary, this paper makes the following contributions:

• Analysis: We analyze the importance of intra-service

tracing observability and the extreme efficiency chal-

lenges in shared and stressed datacenters towards per-

mille level intra-service tracing system.

• Design: We introduce a novel intra-service tracing

system, EXIST, that exploits existing hardware capa-

bilities to support better observability, optimizing the

ternary design considerations in realistic clusters.

• Evaluation: We implement and deploy EXIST for eval-

uations using both benchmarks and real-world appli-

cations. We prove the efficiency and performance im-

provements over existing methods.

In the rest of the paper, Section 2 introduces the motiva-

tions. Section 3 presents EXIST’s design in detail. Section 4

introduces our implementation. Section 5 evaluates EXIST

thoroughly. Section 6 discusses the limitations and future

works. Section 7 summarizes related work. Section 8 con-

cludes the paper.

2 Background and Motivation

This section first illustrates the urgent need for intra-service

tracing observability and further demystifies the challenges

in a shared and stressed cluster.

2.1 The Need for Intra-Service Tracing Observability

Explainablemanagement of emerging software needs chrono-

logical diagnostic information. The increase in software

complexity and aggressive co-location management make it

challenging to understand both the inter-service RPC-level

(Remote Procedure Call) communication [26, 67, 85] and

the intra-service application-level executions [58, 62]. Mak-

ing it even more challenging is the fact that the scheduled

execution can easily be disturbed by unscheduled events

(like metastable traffic peaks [34] and fail-slow hardware

faults [32]) and resource interference (like CPU pipeline con-

tention [91] and power throttling [84]) as shown in Figure 2.

Such anomalies cause frequent performance degradation in

datacenters, requiring on-call engineers to explain them and

recover from them [33].

To understand and mitigate performance anomalies, cloud

providers should have better observability (a measure of

how well components’ internal states can be inferred from

their external outputs [36, 43]) of the served applications.

Figure 2 shows two typical tasks in realistic clusters: latency-

critical task A performs AI-powered recommendation, and

best-effort task B performs distributed caching. We co-locate
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Figure 2. Intra-service tracing observability can better ex-

plain metric anomalies for performance debugging.

A and B to share four cores based on historical usage. At

𝑡0, we detect metric anomalies (in red) via both an abnor-

mal performance indicator (e.g., response time) [45] and an

architectural indicator (e.g., utilization) [65]. However, it is

difficult to explain the anomaly based on the abnormal multi-

dimensional metrics via statistical observability in Figure 2.

Accordingly, a tracing facility that provides chronological

information is required for explainable performance debug-

ging. Conventional statistical observability mainly focuses

on the average characteristics and is blind to microsecond-

level execution causality [68, 88]. In contrast, tracing observ-

ability enhances observation accuracy with chronological

execution details. Figure 2 exemplifies the trace of culprit

task A in the anomaly period. We can get the inter-service

B-A-C causality via distributed tracing [42, 79]. To diagnose

the culprit service A, we can get intra-service insights into

the software and hardware [26, 75], which helps us find that

a blocking syscall at 𝑡0 causes the anomaly. Tracing observ-

ability significantly enhances site-reliability engineering [8]

and profile-guided optimization [12, 51].

Summary: Future explainable datacenter management needs

intra-service tracing observability to achieve a full understand-

ing of complex performance anomalies.

2.2 The Challenges of Extreme Efficiency

Efficiency is the primary challenge of intra-service tracing.

One must minimize the negative performance impact on

the traced applications. Unlike prior studies [70, 77, 86], we

argue that a single-digit-range tracing overhead should be

optimized in shared and stressed datacenters.

Firstly, current datacenters co-locate different tasks on

the same hardware to improve resource utilization [62, 81],

increasing the need for intra-service tracing efficiency. We

observe that intra-service tracing incurs a larger overhead in

a shared execution environment. As shown in Figure 3a, we

select two applications in the SPECCPU 2017 benchmark [11]

to run concurrently on the same cores. A (620.omnetpp) is

profiled with Perf, and B (657.xz) is not profiled while run-

ning. We have two key findings. 1) By comparing the first



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Xinkai Wang, et al.

4.3 4.4

2.1

6.1

7.6

3.1

0%

2%

4%

6%

8%

Exclusive Pod
A w/ Profiling

Shared Pod A
w/ Profiling

Shared Pod B
w/o ProfilingEx

ec
ut

io
n 

Ti
m

e 
Sl

ow
do

w
n

Sampling with F=4000 Tracing with IPT

Overhead increases 
in shared scenarios

Co-located B is 
affected by 
profiling A

(a) Tracing in shared scenarios

0%

5%

10%

15%

20%

Load=1e2 Load=1e3 Load=1e4 Load=1e5
E2

E 
R

T 
Sl

ow
do

w
n

50% 75% 90%
99% 99.9%

Worse degradation with higher workload 
stress!

Tail Latency

2% Overhead of 
Tracing Single Service

(b) Tracing in stressed scenarios

Figure 3. Single-digit-range intra-service tracing overhead

affects performance greatly in shared and stressed clusters.

4 5 23 
58 

359 400 

0.E+0

3.E+6

6.E+6

9.E+6

1.E+7

0

100

200

300

400

w/o tracing w/ tracing w/o tracing w/ tracing w/o tracing w/ tracing

Exclusive A Shared A with B Share A with B and C H
ar

dw
ar

e 
Ev

en
ts

 C
ou

nt

So
ftw

ar
e 

Ev
en

ts
 C

ou
nt

Branch Misses L1 Cache Misses LLC Misses
Context Switches CPU Migrations Kernel Time

15
%

19
%

32
%

Figure 4. Software and hardware analysis of increasing trac-

ing overheads in multi-application scenarios.

two groups of bars, we can see that the intra-service profil-

ing overhead increases under shared scenarios, especially

when tracing is on (green bars). (2) If we look at the last two

groups of bars, it shows that the tracing overhead affects the

co-located innocent applications, inducing cascaded perfor-

mance degradation. The above overhead is much worse in

real-world clusters with more aggressive co-location [81].

To further analyze tracing overheads in multi-application

scenarios, we investigate the tracing process from software

and hardware perspectives in Figure 4. We monitor key soft-

ware events (context switches, CPU migrations, and kernel

time) and hardware events (branch misses, L1 cache misses,

and last-level cache (LLC) misses) via Perf [59]. Besides co-

locating 620.omnetpp (A) with 657.xz (B), we further co-

locate them with Mysql [22] driven by Sysbench [52] (C)

to analyze the impact of co-location density. We find that

the number of context switches increases greatly in multi-

application scenarios, and tracing control operations at every

context switch contributes to the increase in overhead. More-

over, conventional tracing causes an increase in kernel time

and the phenomenon is worse in multi-application scenarios

due to complex tracing operations. As for hardware events,

co-location greatly affects the three metrics due to resource

interference, but the tracing facility only causes a slight in-

crease (1.3%) in LLC misses.

In addition, today’s datacenter is a stressed execution en-

vironment that could further increase intra-service tracing

overhead. Resource saturation is not unusual, and servers
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X. The experimental settings on the left include the shared

resources on the right.

are often running close to their resource/performance limits

(e.g., CPU utilization ≥ 90%). Such scenarios result from vari-

ous causes like resource overcommitment [65], frequent full-

link stress tests [99], and extreme traffic peaks [96]. There

are more quality-of-service (QoS) violations than daily low-

utilization situations since increased performance jitters can

cause severe cascading effects. Therefore, stressed clusters

are more vulnerable to intra-service tracing disturbances. As

shown in Figure 3b, we mimicked a stressed execution envi-

ronment with open-sourced benchmark DeathStarBench [25]

and use Perf [59] to trace the ComposePost service. Under

high load, even a single-digit-range intra-service profiling

overhead (∼2%) on a single service could induce more than

10% end-to-end response time degradation.

Consequently, the seemingly tolerable intra-service trac-

ing overhead would result in significant performance degra-

dation. However, the observed degradation would be neg-

ligible if the tracing overhead is reduced to per-mille level.

Figure 5 illustrates four main factors in realistic clusters. �
The traced pod (the smallest unit of application) [54] A on

logical cores are affected first. � The interference on shared

resources like physical cores affects the co-located pod B. �
The successor pod C needs to wait longer for a single RPC

from the affected pod A, and the number of RPCs between

pod A and C in a single request can be tens of times to finish

functionality [67], exacerbating the end-to-end performance

impact. � The periodic outer traffic stress aggravates the

shared clusters into chaotic environments [9], resulting in

irregular QoS violation.

Further, we experimentally isolated the multiplexed re-

sources in shared environments. We analyzed the impact of

three key hardware resources (HT, core, and LLC) based on

resource partitioning studies [14]. The throughput perfor-

mance of Mysql with and without tracing was measured. We

found that no specific hardware resource contributed signifi-

cantly to the increased tracing overhead in multi-application

scenarios. Shared LLC, core, and HT contribute to 1%, 1.5%,

and 1.4% throughput slowdown, respectively.
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Summary: Intra-service tracing observability for shared and

stressed clusters requires an overhead at the per-mille level to

eliminate negative effect on the monitored applications.

2.3 Inherent Trade-offs of Extreme Efficiency

Given the extreme efficiency challenges, the emerging hard-

ware tracing capabilities of recent CPUs present a new oppor-

tunity. It enables instruction-level tracing without intrusion

into the normal execution of workloads [6, 37, 55]. The de-

tailed workflow of typical Intel mechanisms is specified in

Section 6.1. To utilize hardware tracing, researchers have

built abstractions for various downstream tasks like reverse

debugging [19, 28], security enhancement [27, 60], and pro-

gram tracing [102]. However, current system abstractions

of hardware tracing capabilities are far from the per-mille

level efficiency required in realistic clusters since it faces a

conflicting three-dimensional design trade-off.

1. Better Time Efficiency means little negative effect on

the performance of the observed applications.

2. Better Space Overhead means smaller physical memory

occupation to store trace packets.

3. Better Data Coverage means larger intra-service trace

spans on an individual worker.

Due to hardware limitations, all three dimensions cannot

achieve the optima concurrently, hence some need to be

sacrificed. As shown in Figure 6, designs for reverse debug-

ging [19, 28] (the first column) sacrifice time and data for

minimal space overhead. They use small circular buffers (e.g.,

64KB per thread) to record the microsecond-scale traces just

before the failure and applies frequent tracer operations to

manage the tiny buffer. Meanwhile, designs for security en-

hancement [27] (the second column) sacrifice time overhead

for better space overhead and data coverage. They manip-

ulate tracers at each context switch and dump data every

time the tiny buffer gets full. Worse, conventional designs

for tracing [73, 102] (the third column) aim for full execution

tracking and sacrifice time and space overhead formaximized

data coverage, contradicting the efficiency requirements.

The gap between the low-overhead of hardware tracing

and per-mille level efficient tracing systems if mainly caused

by the control operations. During tracing, users need to

manipulate specific Model-Specific Registers (MSR) to con-

trol the trace precision, target process, and buffer destina-

tion. Worse, tracing control must be done with tracing dis-

abled [37], so every control needs to: (1) disable tracing, (2)

modify the settings, and (3) enable tracing, which interrupts

the execution of the traced application. Meanwhile, tracing

control may incur costly switches between user and ker-

nel mode if the trace settings rely on user-level information.

Overall, reducing the complexity of runtime control is crucial

to achieving a per-mille level efficient tracing facility.

We seek to provide appropriate abstractions for efficient

intra-service tracing. Firstly, extreme time efficiency at the

per-mille level causes little effect on the monitored applica-

tions. Further, it is important to ensure high performance

under the given resource limits. For space overhead, it is not

critical to keep kilobytes-scale memory occupation. In prac-

tice, node-level facilities occupying around 1% memory are

tolerable for deployment, typically 1e3 MB for our servers.

Flexibly organizing the limited memory space based on ap-

plication information is preferable for prioritizing the time

efficiency. In compensation, the intra-service tracing span

reduces to orders of milliseconds, which is sufficient for per-

formance debugging. As for software profiling demanding

extended coverage, we can utilize multiple trace repetitions

in the datacenter to obtain the complete profile.

Summary: Building the right abstractions of hardware tracing

capability is attractive for intra-service tracing but requires a

careful design for extreme efficiency.

3 Design of EXIST

To fulfill the intra-service tracing void, we propose EXIST,

an Extremely Efficient Intra-Service Tracing system in large-

scale clusters. This section describes the technical details

of EXIST which allows intra-service tracing with extreme

efficiency and balanced space overhead and data coverage.

3.1 Design Overview of EXIST

In Figure 7, we give an overview of EXIST that contains

three cooperative components for our pursuit of a three-

dimensional design optima.

1. Operation-awareTracingController (OTC) extends

the operating system and optimizes intra-service trac-

ing for better time efficiency. It reduces the number of

critical control operations of the tracing facility from

the number of context switches to the number of pro-

cessing cores during the tracing period to minimize

performance slowdowns.

2. Usage-aware Memory Allocator (UMA) cooperates

with OTC at the node level to fully utilize memory

space for storing more useful traces. Faced with space
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constraints, it adjusts the traced set of processor cores,

dynamically allocates buffers for them, and adjusts

the buffer settings for each core based on runtime

application usage information.

3. Repetition-awareCoverageOptimizer (RCO)works

at the cluster level to orchestrate the intra-service trac-

ing. It pursues better data coverage and cluster-wide

cost-efficiency. Given the high costs and marginal ben-

efits of exhaustive tracing on all servers, we designed

a two-dimensional temporal-spatial sampling mecha-

nism to select appropriate tracing repetitions to opti-

mize the trace data coverage.

Notably, EXIST is triggered on demand via an easy-to-use

interface on a user request or when abnormal metrics are

detected. EXIST collects the change of control flow trace

packets at every branch and timing information at runtime.

Afterward, EXIST uses an off-the-shelf software decoder [39]

to reconstruct the execution flow from the trace packets and

returns the human-readable application traces to users for

anomaly analysis. EXIST focuses not only on putting exist-

ing hardware tracing into use but also on how to construct

an efficient intra-service tracing facility to support better

observability in realistic datacenters.

3.2 Operation-Aware Tracing Controller
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text switch periods.

To pursue per-mille level

efficiency, we identify

the critical register switch-

ing operations that af-

fect the execution of

the monitored applica-

tions. Compared to con-

ventional heavy con-

trol, OTC adopts light-

weight control by reduc-

ing costly operations

and proactively limiting

the tracing process. The

conventional paradigm
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Figure 9. Details of operation-aware tracing controller.

generates traces continuously into a circular per-thread

buffer and relies on signals like failures to stop tracing [19,

27, 28]. It requires modifying the control MSRs at every con-

text switch to adjust the trace settings, producing redundant

costly operations. Figure 8 presents the Cumulative Distri-

bution Function (CDF) of context switch periods collected

by eBPF [1] on a realistic server. Most cores and threads

experience a context switch in under less than 1ms, meaning

the conventional schemes cause 1000 times more operations

compared with an order of seconds control period. Context

switches of some processes on few cores are abnormally

longer, hence distribution of all switches are higher than

those grouped by core/process. Such designs also raise the

stability risks of clusters since frequent unsafe MSR modifi-

cations may cause fail-stop servers [40].

OTC eliminates the unnecessary operations in tracing con-

trol as shown in Figure 9. Firstly, the tracing facility receives

an anomaly request to initialize tracing and passes the trac-

ing configurations, including the coreset and period, to the

kernel hooker. The tracing facility proactively monitors the

tracing process and uses a high-resolution timer (HRT) to

limit the tracing period by terminating the tracing when the

HRT expires. It then transfers the trace packets for analysis

based on user requests.

Secondly, the kernel hooker injects hooks in sched_switch

tracepoint to manipulate tracers. When the targeted process

is scheduled onto core𝐶 , the hook enables the tracer of𝐶 by

setting the TraceEn bit of the controlMSR IA32_RIIT_CTL [37].

However, the hook does not manipulate tracing when sched-

uled out and naturally eliminates the unnecessary operation

when scheduled in again. Data collection of unrelated threads

are prohibited by process filter mechanism. Such a design re-

duces costly interrupts from the number of context switches

to the number of processing cores, minimizing runtime over-

head. Moreover, OTC operates purely at kernel mode to

reduce additional overhead of user/kernel mode switch. At

the end of tracing, the kernel hooker disables the tracers of all

scheduled cores by clearing the TraceEn bit, which prevents

infinite tracing and improves system robustness. Note that

although on-demand control of tracing has been explored

in prior works [42, 50, 63], EXIST innovates in reducing

redundant control operations for extreme efficiency.
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3.3 Usage-Aware Memory Allocator

To fully utilize the limitedmemory space, EXISTmanages the

physical memory with two components: coreset sampler and

buffer manager, as shown in Figure 10. The former executes

at the user level to select the traced coreset, and the latter

executes at the kernel level to manage buffers.

Firstly, the coreset sampler uses application metadata to

determine the set of traced cores. Hardware tracers require

allocating fixed memory space for the processor core be-

fore tracing begins. Allocating a maximum per-core buffer

(128 MB) to every processor core (128 cores) causes a great

waste of host memory (16 GB). Figure 11 shows the memory
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Figure 11. Host memory allo-

cation and utilization rates.

usage on a typical server.

Although the memory

utilization is relatively

low, the allocated mem-

ory almost reaches the

ceiling [65, 83]. Given

the limited memory for

the tracing facility (0.5-1

GB), allocating them to

all cores equally reduces

the size of the per-core

buffer and the trace in-

formation gathered. Thus, we must carefully allocate mem-

ory space for the cores that are actually executing.

Current software has two CPU provisioning modes: CPU-

set mode maps the application to several CPU cores exclu-

sively, while CPU-share mode maps the application to a large

shared coreset [81]. We call the provisioned cores Mapped

Core Set (MCS) and potential traced cores Traced Core Set

(TCS). EXIST gets the software metadata at the user level.

To minimize memory overhead, EXIST devises respective

settings for the two provisioning modes. For CPU-set appli-

cations, MCS equals TCS, and we allocate memory buffers

to the entire MCS equally. The status of the current node

determines the buffer size for each core. For CPU-share appli-

cations, we design a core sampling mechanism to pick TCS

selectively. The TCS includes the current core and randomly

selected cores with varied utilization. Empirically, the low-

utilization cores are more likely to be scheduled in and are

assigned bigger buffers. The buffer settings are determined

by the system status at the time OTC initializes tracing.

Secondly, EXIST assigns a cache-bypass memory buffer to

each traced core instead of each traced thread, since we de-

sire to reduce the frequency of MSR operations. Admittedly,

per-thread buffer schemes [19, 27] isolate memory areas

from the software’s point of view. However, it requires MSR

operations at every context switch because hardware tracing

capability can only change the buffer base address with trac-

ing disabled [37]. Moreover, we choose to adopt compulsory

tracing instead of the conventional ring-buffer [19, 73], that

is, � the extra data is dropped when the buffer is full. This

enables us to record more related traces closer to the perfor-

mance anomaly and keep the amount of memory used under

control. To keep the content of the process of interest, � we

adopt an on-demand tracing policy that stops tracing when

the targeted thread schedules out based on CR3 filter [37],

ensuring that EXIST causes no effect on the unrelated pro-

cesses. To reason about the dependency across threads for

multi-threaded applications with per-core settings, the hook

injected in the sched_switch tracepoint records the informa-

tion of context switches in a five-tuple [Timestamp, CPUID,

ProcessID, ThreadID, Operation], and each context switch

produces a 24-byte array to assist in multi-thread tracing.

3.4 Repetition-Aware Coverage Optimizer

Besides the node-level time and space optimizations, we

also need to orchestrate intra-service tracing in clusters and

enhance data coverage. Exhaustively tracing all identical
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tracing multiple repetitions.

workloads of interests

on all nodes (repeti-

tions) of all time results

in high costs and mar-

ginal benefits since ap-

plications behave sim-

ilarly without perfor-

mance anomalies [77].

As shown in Figure 12,

with the increase of

trace repetitions, linearly

growing tracing costs

bring better trace coverage. A large proportion of application

behaviors are identical so tracing multiple repetitions has

diminishing and marginal benefits. Therefore, we want to se-

lect the tracing repetitions that are truly needed for reducing

the cost of software profiling.

Firstly, given a tracing request on a specific application,

the temporal decider selects suitable tracing periods based on

the complexity of the target application, and more complex

programs require more extended tracing periods to cover

their execution. In practice, we adopt the weighted sum of

three factors in application complexity measurement: prior-

ity pre-defined in the manager, size of the binary file, and the

number of previous stability issues. Moreover, we measure
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the reference monitoring overhead on the applications in

advance to jointly decide the proper tracing settings.

Secondly, the spatial sampler selects a fraction of repeti-

tions as tracing entities. For performance anomalies, we trace

all the entities involved since the abnormal behaviors are dis-

tinct. For software profiling, we select repetitions based on

deployment density and application priority, where higher-

priority and broader-deployed applications are traced more.

Also, we set a deployment threshold to guarantee necessary

observation on applications deployed only once. For trace

repetitions, we remove redundancy and complement the

missing traces on each node. Although the sampling-based

tracing entity selection has been used in previous works to

reduce overheads [70, 77], EXIST innovates in considering

software online and offline data to make just-right decisions.

4 Implementation and Deployment

We implement EXIST in realistic clusters. Our design mainly

spans two system layers, namely node-level OS kernel and

the cluster-level cloud manager. The former is implemented

with roughly 14K LoCs in C, and the latter is implemented

with roughly 3K LoCs in Go.

For node-level tracing, we set the TraceEn and BranchEn

bits to enable Change of Flow Instruction tracing. We also

set the CYCEn bit to enable cycle-accurate tracing for IPC

computation. Further, we set the CR3Filter bit to enable filter-

ing the process of interests. For buffer management, we set

the ToPA bit to enable the Table of Physical Address (ToPA)

output mechanism, which links variable-sized regions of

memory with tables of pointers into one destination. The

STOP bit of the last entry of ToPA is set. Other control bits

are left as default [37]. As for hyperparameters, we allow for

5e2 memory space occupation for intra-service tracing and

the per-core buffer size ranges from 4MB to 128MB. Empir-

ically, the tracing period ranges from 0.1 to 2 seconds. We

provide default tracing options but also support personalized

tracing where users can adjust the configurations.

Further, we integrate EXIST into the datacenter manage-

ment in a cloud-native manner. Developers and engineers

can use EXIST through a unified interface. As for the control

flow, user requests and tracing configurations are encap-

sulated as Custom Resource Definitions (CRD) [53] in the

Kubernetes API server. We implement separate controllers

for each CRD to finish the reconciliation process. As for the

data flow, the traced data is uploaded to the unstructured

object storage service (OSS) [18] directly instead of storing

locally to reduce memory and file I/O overheads. We use an

off-the-shelf software decoder [39] to reconstruct the con-

trol flow. The software decoder gets traces from OSS and

program binaries from the binary repository. After decoding,

it outputs the results to the structured open data processing

service (ODPS) [17] for persistent storage, which could be

queried easily by all users for analysis and reproduction.

We aim to implement a widely applicable facility for intra-

service tracing in large-scale clusters. First, software-level

instrumentation is portable but hard to apply to all the appli-

cations of interest. Alibaba clusters currently accommodate

more than ten thousand applications, which are built upon

10+ programming languages and various development frame-

works. The scale and diversity make it challenging to apply

well-crafted but customized instrumentation methods for

intra-service tracing observability [66, 72]. Although one

can instrument the shared underlying operating systems to

obtain kernel-level execution traces with eBPF tools [1, 41],

the more vital user-level execution traces are still black boxes

to be observed. Second, hardware-level domain-specific de-

signs are promising but fail to deploy in realistic clusters.

Alibaba clusters contain more than 100 thousand nodes with

28 million CPU cores across seven generations of Intel X86

processors, and therefore our tracing systems should be com-

patible with off-the-shelf hardware rather than customized

hardware support [29, 30]. Therefore, we implement EXIST

without additional support from software programmers and

hardware vendors to enable its large-scale deployment.

5 Evaluations

Our evaluation wants to answer three questions:

1. How efficient is EXIST and what are its effects on the

observed workloads? (§ 5.2)

2. How accurate is EXIST in different scenarios? (§ 5.3)

3. How can EXIST support tracing observability in real-

istic scenarios? (§ 5.4)

5.1 Evaluation Methodology

Platforms:We implement EXIST as described in Section 4

and evaluate it in two environments. One environment is

used for offline experiments on standard benchmark suites.

For this, we use two nodes with dual-socket 32-core Intel

Xeon Platinum 8369B CPU, IceLake architecture, 1TB mem-

ory, and Linux 4.19.91 system. The other environment runs

online business services, allowing us to evaluate the perfor-

mance of EXIST in realistic scenarios. We select ten nodes

with dual-socket 24-core Intel Xeon Platinum 8163 CPU,

SkyLake architecture, 384GB memory, and Linux 5.10.112

system. Moreover, the end-to-end metrics (e.g., execution

time, throughput) are obtained from application outputs, and

the runtime metrics (e.g., user/sys utilization, memory us-

age) are obtained via the existing monitoring system [81].

The evaluation metrics presented are averages of repeated

experiments on diverse nodes to reduce the result biases.

Workloads: We use both standard benchmarks and pro-

duction applications to evaluate EXIST as shown in Table 1.

On the one hand, we use SPEC CPU 2017 Integer bench-

marks [11] for two reasons. Firstly, they can be easily traced
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Table 1. Evaluated compute benchmarks, online bench-

marks, and real-world applications.

Name Applications Descriptions

pb 600.perlbench_s Perl interpreter

gcc 602.gcc_s GNU C compiler

mcf 605.mcf_s Route planning

om 620.omnetpp_s Discrete Event simulation

xa 623.xalancbmk_s XML to HTML conversion

x264 625.x264_s Video compression

de 631.deepsjeng_s Alpha-beta tree search

le 641.leela_s Monte Carlo tree search

ex 648.exchange2_s Recursive solution generator

xz 657.xz_s General data compression

mc Memcached In-memory cache

ng Nginx Web server

ms Mysql Online database

Search1 Latency-sensitive CPU-set search engine service

Search2 Latency-sensitive CPU-share search engine service

Cache Best-effort memory graph caching service

Pred ML-based click-through rate prediction service

Agent Node-level SLO management service

offline for validation. Secondly, they represent compute-

intensive scenarios to validate EXIST in high-utilization sce-

narios [13]. Also, we use three online benchmarks: (1)Mem-

cached [24] for in-memory caches; (2) Nginx [76] for web

servers; (3) Mysql [22] for online databases. For Memcached,

we use the Memtier benchmark [56] to simulate ten concur-

rent clients with 1:1 set-to-get ratio. For Nginx, we use the

Apache benchmark [5] to simulate ten concurrent clients

constantly sending 20K requests, each of them requesting

one 20B-sized file. For Mysql, we use Sysbench [52] to simu-

late read-write requests on ten 1M-sized tables. On the other

hand, we select five real-world cloud applications from the

Alibaba e-commerce pipeline: (1&2) two latency-sensitive

search services based on the Havenask engine [2] with differ-

ent CPU-provision modes; (3) a best-effort caching service

based on iGraph [16]; (4) an ML-based prediction service

based on the RTP engine [74]; (5) a node-level management

facility for guaranteeing service-level objectives.

Baselines: To understand the performance of EXIST, we

compare it with three state-of-the-practice baselines as shown

Table 2. Baselines used for comparison

Scheme Descriptions Usage

Oracle Normal execution w/o tracing runcpu intspeed

StaSam Statistical Sampling perf record -a -F 3999

eBPF eBPF-based Tracing bpftrace -e "sys_enter"

NHT Native Hardware Tracing perf record -e intel_pt

SHT SOTA Hardware Tracing Results in their papers

in Table 2. Tracing systems are turned on for the entire ex-

periments. The first, StaSam, uses a non-chronological sam-

pling method and records statistical events with a default

frequency of 4K [59]. The second, eBPF, is eBPF-based trac-

ing method driven by the user-level bpftrace tool, which

records the sys_enter events [1]. The third, NHT, uses native

hardware tracing , enabled by the open-sourced Perf [73].

These three baselines represent popular monitoring meth-

ods in datacenters. Due to orthogonal design objectives and

the public unavailability of conventional hardware tracing

designs [19, 28, 60, 102], it is hard for us to perform a fair re-

production in our clusters, so we generally compare against

them in our analysis using the results in their papers.

5.2 Efficiency

To answer the first question, we evaluate EXIST’s time ef-

ficiency by comparing it against three state-of-the-practice

methods and eight state-of-the-art (SOTA) schemes.

Time Efficiency on Benchmarks: Tracing SPECCPU ap-

plications causes execution time slowdown, which reflects

the performance impact. We normalize the time with tracing

by the time without tracing (Oracle). As shown in Figure 13,

the slowdown of EXIST ranges from 0.4% to 1.5% for the en-

tire SPECCPU benchmark. On average, EXIST reduces time

overhead by 3.5x, 4.4x, and 6.6x over the StaSam, eBPF, and

NHT baselines, respectively. As for the online benchmarks,

we compare the time efficiency using throughput metrics

in Figure 14. The results show that EXIST reduces tracing

overhead by 6.4x, 7.3x, and 12.2x over the three baselines,

respectively. We find that online benchmarks are more sensi-

tive to tracing compared to compute-intensive benchmarks

since tracing disturbances cause cascaded slowdowns of sub-

sequent queries in such applications. EXIST achieves 1.1%

overhead with minimal intrusion into applications.
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Table 3. Time efficiency comparison with SOTA results. c and o represent results on compute and online benchmarks.

Schemes
Hardware tracing-based methods Instrumentation-based tracing methods Our results

REPT[28],o FlowGuard[60],c Upgradvisor[21],c JPortal[102],o Log20[98],o Hubble[68],c DMon[50],o Argus[88],o EXIST,c EXIST,o

Average 5.35% 3.79% 6.4% 11.3% -0.2% 5% 1.36% 3.36% 0.9% 1.1%

Worst 9.68% 30% 16% 16.5% 0.9% 25% 4.92% 5% 1.5% 1.6%
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Figure 15. EXIST induces little tracing overhead on cloud

applications under stressed scenarios.

Further, as shown in Table 3, we compare EXIST’s time effi-

ciency with SOTA works on similar benchmarks. Compared

with hardware tracing-basedmethods, EXIST greatly reduces

the tracing overhead by up to 12x. Compared with more

efficient instrumentation-based methods, EXIST achieves

lower tracing overhead over most SOTA methods. Note that

Log20 [98] aims to find more informative logging locations

within a user-specified overhead threshold, and therefore,

they can eliminate more logs to reduce overheads further.

Time Efficiency on Real-World Applications: To evalu-

ate EXIST on long-running applications in our clusters, we

choose CPU utilization and Cycles Per Instruction (CPI) met-

rics instead of end-to-end execution time. The former reflects

a relative resource perspective and the latter reflects an ab-

solute hardware perspective. For diverse applications, EXIST

causes a 1.1% utilization increase on average, which is 2.4x,

2.8x, 12.2x better than the three baselines. As for CPI, EXIST

induces 2.2% overhead over Oracle at low workload stress,

while StaSam, eBPF, and NHT induce 5.1%, 4.9%, and 20.8%

overheads, respectively. EXIST improves time efficiency by

eliminating the tedious interrupts and operations and thus

causes low overheads on cloud applications, allowing us to

deploy it in realistic clusters.

End-to-End Performance Improvements: To further an-

alyze the end-to-end performance improvements via effi-

cient tracing, we evaluate end-to-end response times. We

trace Search1 in its corresponding request and record the

99% tail latency of request response times. As shown in Fig-

ure 16, per-mille level EXIST induces 1-3% end-to-end per-

formance degradation compared to the �10% slowdown

via single-digit-range overhead of the baselines. Moreover,

under stressed scenarios, EXIST has a negligible effect on

end-to-end performance and far outperforms the baselines.

Note that the end-to-end performance slowdown amplifies
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Figure 16. EXIST induces negligible overall performance

degradation compared to the baselines.

Table 4. Comparison of space efficiency (MB). StaSam pro-

vides no chronological information and eBPF traces the

sys_enter tracepoints, so they occupy little space.

Schemes pb gcc mcf om xa x264 de le ex xz mc ng ms

StaSam 4.4 4.5 4.4 4.6 4.7 5.1 5.0 4.9 4.2 32.1 1.9 0.8 4.1

eBPF 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2

NHT 60.2 64.1 70.2 72.1 73.2 75.2 74.8 71.9 75.2 1173 224 47.9 578

EXIST 55.4 56.2 55.1 54.9 55.3 56.3 57.2 57.1 58.1 456.3 203.1 42.8 498.1

the single-point tracing overhead due to inter-service inter-

actions and we will optimize it further in the future.

Space Efficiency: The second critical aspect of the efficiency

question is the space overhead, i.e., the amount of main mem-

ory used. We set the number of threads and cores to 4 and

trace the subjects for 0.5s. As shown in Table 4, StaSam sam-

ples the function stack and eBPF just traces the sys_enter

tracepoints. They have a smaller memory footprint but can-

not support intra-service tracing. In general, the space over-

head is related to program logic, the number of occupied

cores, and the utilization of each core. For single-threaded

benchmarks, EXIST just traces the occupied cores and col-

lects traces within memory space limits, which maintains

most of the traces. For multi-threaded situations like 657.xz,

we gradually enable the tracers with scheduling process and

are able to obtain most traces within the memory threshold.

NHT covers the entire execution on all cores and incurs time-

proportional space overhead. As for the online benchmarks,

the memory space used is restricted to the memory limit,

and they produce fewer trace packets compared with the

compute benchmarks due to lower processor utilization.

Impact of System Stress: To analyze the efficiency of EXIST

in stressed environments, we present the overhead induced

by EXIST under low and high workload stress in Figure 15

for the online benchmarks. The low and high loads indicate

roughly 1e2 and 1e4 requests per second, respectively. By

reducing the number of costly operations, EXIST achieves
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Figure 17. EXIST startup and orchestration overheads.

similar time efficiency under high stress to that under low

stress, making EXIST suitable for diagnosing more frequent

performance anomalies in stressed scenarios. In contrast, the

conventional methods all cause greater waste of CPU cycles

due to the intrusiveness of normal execution.

Impact of Provisioning Modes: We further analyze the

performance of EXIST for applications under different pro-

visioning modes. For CPU-set Search1, EXIST has more neg-

ligible overhead than the other CPU-share applications as

shown in Figure 15 since the scheduling is bound to specific

cores. Also, Search1 experiences less buffer overflow than the

CPU-share ones since we can increase the buffer size of each

core to the maximized 128 MB. Moreover, although CPU-

share Search2 is mapped to more cores, they tend to execute

on a few cores, indicating the necessity of core sampling

mechanism to enlarge per-core buffer.

Deployment Overhead: We present the realistic deploy-

ment overhead of EXIST on a ten-node cluster. As shown

on the left side of Figure 17, isolated execution of EXIST

incurs negligible CPU usage for tracing, except for the high-

est 0.05 core occupation during startup to install the kernel

module for tracing (Insmod), which aligns with the anal-

ysis above. Apart from intra-service tracing efficiency, we

present the overhead of cluster-level orchestration. For the

evaluated ten-node cluster, the RCO management pod con-

sumes less than 3e-3 cores and 40MB for management under

high workload stress. As for the periodical tracing scenar-

ios, it consumes 2e-3 cores and 40MB to trigger and control

intra-service tracing. Expanding to the thousand-scale clus-

ter, EXIST achieves less than 1‰ management overhead to

orchestrate the large-scale intra-service tracing.

5.3 Effectiveness

To answer the second question, we evaluate EXIST’s accu-

racy compared with the exhaustive tracing method of NHT

which has significant overhead. It can be used as ground

truth and the comparison is similar to prior work [102]. We

do not compare the accuracy with StaSam and eBPF since

they cannot provide chronological instruction traces.

Accuracy on Benchmarks: Standard benchmarks have

similar behaviors in different executions, so we can compare

the reconstructed execution directly. EXIST’s accuracy is

obtained by measuring the degree of matching between each

EXIST-reconstructed execution path of 0.5s period and its

corresponding path collected by NHT. For single-threaded
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Figure 18. Accuracy of EXIST on real-world applications.

compute benchmarks from 600.pb to 648.ex, EXIST achieves

87.4%-95.1% accuracy and 90.2% accuracy on average. On

multi-threaded 657.xz, EXIST achieves 62.2% accuracy. For

online benchmarks, EXIST achieves 92.4%, 93.1%, and 89.4%

accuracy, respectively. Such accuracy can support execution

flow reconstruction and application behavior analysis. The

accuracy gap ismainly caused by data loss due to thememory

space threshold, but the reconstructed execution paths of

concurrent threads are accurate. Given the same memory

space constraints as NHT, EXIST could achieve more than

95% accuracy on all benchmarks.

Compared with the accuracy of SOTA solutions listed in

Table 3, we can further analyze the effectiveness of EXIST. As

for hardware tracing-based methods, the first three methods

focus on function behavior analysis, and their millisecond-

scale coverage falls short when comparing tracing accuracy.

JPortal achieves 80% accuracy on Java benchmarks with opti-

mizations on bytecode mapping, and EXIST achieves compa-

rable accuracy with better efficiency. As for instrumentation-

based methods, the accuracy of Log20 relies on instrumenta-

tion accuracy, while Hubble and Argus automatically obtain

function entry&exit traces without considering instruction-

level information. DMon collects memory access instruction

traces without considering control flow. Overall, besides

having satisfactory accuracy compared with NHT on stan-

dard benchmarks, EXIST achieves comparable accuracy with

SOTA solutions within instruction-level execution tracing.

Accuracy on Real-World Applications: Long-running

cloud applications are too dynamic to capture exactly the

same periods with EXIST and NHT, and we cannot fully

instrument the software to get the ground truth as we did

earlier [102]. Thus, we adopt a relative comparison similar

to Wall’s weight matching scheme [70]. We define the ac-

curacy as (maxerror - error)/maxerror where error denotes

the sum of functions’ occurrence differences between NHT

and EXIST. For the worst-case results where the functions

are all missed, the maxerror sums up to 2. Figure 18 shows

the accuracy of three cloud applications under different trac-

ing configurations. In general, EXIST achieves 83.7%, 82.6%,

86.2% accuracy on average for tracing 0.1s, 0.5s, and 1s pe-

riods, respectively. In particular, EXIST achieves 87.4% for

CPU-share Search2 on average, validating accurate tracing of

concurrent threads scenarios. The abnormal case for Agent
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Figure 20. Accuracy of EXIST under cluster-level sampling

and trace augmentation.

under the 0.5s period results from the periodical behaviors

of the application, and the two methods capture different

phases of the system daemon in the experiments.

Impact of Core Sampling: To analyze the impact of the

core sampling mechanism described in Section 3.3, we show

the accuracy of EXIST on CPU-share Search2 under different

core sampling ratios in Figure 19. Core sampling ratios de-

notes the actually traced cores divided by all mapped cores.

For 30%-100% ratios, we trace 14, 24, 38, 48 cores with 32MB,

16MB, 8MB, 8MB per-core buffer, respectively. The results

show that the core sampling mechanism rarely decreases

the tracing accuracy under various settings, but the mecha-

nism significantly affects space occupation. With a 1s period,

the selected 30% cores cover all executed cores and EXIST

traces more with bigger buffer sizes. In practice, the target

process uses just a few cores rather than all cores during

the tracing period, so assigning the buffers intelligently and

precisely to just the used cores could further increase the

tracing efficiency and accuracy.

Impact of Trace Augmentation: Figure 20 shows the accu-

racy under varying numbers of tracing workers to evaluate

the cluster-level trace augmentation mechanism described in

Section 3.4. Traces from different workers remove the redun-

dancy and complement the missing parts. We present the

results on relatively stable Search1. The results of Worker=1

are the average accuracy of ten workers, and the results of

Worker=3 are merged with the results of selective workers.

It shows that synthesizing the traces from more workers

could improve the accuracy on a single worker due to bet-

ter trace data coverage. Such a mechanism produces up to

11% improvements and no additional adverse effect on the

node-level intra-service tracing efficiency.
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5.4 Case Study of EXIST

To answer the third question, we present a case study that

utilizes EXIST to understand applications in our clusters.

Firstly, we can use EXIST to get software execution pro-

files at instruction and function levels. We present an accu-

rate bottleneck analysis of five critical applications in Fig-

ure 21. Search and Cache are traditional CPU-intensive and

memory-intensive applications; the other three are emerg-

ing AI-powered applications. Matching is based on the BE

engine [15]; and Recommend is based on Machine Vision

Application Platform (MVAP) [82]. Compared with statistical

observability, we can present accurate application behaviors

via text matching of functions and instructions. Further, we

can diagnose the reasons behind the differences.

At the function level, we present the ratios of costly func-

tions of three critical categories: memory, synchronization,

and kernel and the categorization is similar to priorworks [80].

Although the results align with those of traditional appli-

cations [44, 80], we find that three ML-based applications

perform differently. Take KERNEL_IRQ of Recommend as an

example. It is heavily multi-threaded, so more rescheduled

interrupts are followed by mutex synchronizations, increas-

ing the ratios of corresponding leaf functions. It provides

us with new opportunities to design specific accelerators

and system extensions to optimize it for Recommend appli-

cations. To dive deeper into instruction-level behaviors, we

analyze memory access operations in Figure 22. It shows that

ML-based applications have significantly higher quad-width

accesses (25% to 70%), which may result from the reduced

accuracy in high-throughput inference serving.

Secondly, we can use EXIST to diagnose performance

anomalies. For the Recommend application, we can monitor

the increase in execution time, the number of concurrent
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threads, and disk I/O by monitoring metrics, but we cannot

diagnose the actual reasons of encountered metric anom-

alies. With EXIST, we can trace its abnormal execution. We

identify a file_write syscall that consumes 3.7 seconds and

multiple syscalls waiting for a mutex lock. By mapping the

syscall location to user functions, we can find a logging op-

eration that synchronously writes logs and is blocked by

disk IO. We can use EXIST to explain the metric anomaly:

the synchronous logging thread blocks all other co-located

threads from logging, causing abnormal response times and

the number of threads. Also, we can improve the scheduling

logic by isolating the disks of similar applications or modify-

ing their logging logic in the future. It is worth mentioning

that EXIST focuses on improving tracing efficiency instead

of improving diagnosing accuracy, so these anomalies could

mostly be diagnosed by well-crafted methods with higher

overheads [19, 50, 64, 88, 102]. With the help of EXIST, we

have diagnosed many unsolved puzzles due to the absence

of efficient and practical tools.

6 Discussion

6.1 Hardware Tracing Capability Enhancements

Hardware tracing is a feature provided by major hardware

vendors that supports real-time tracing bypassing normal

processor execution, e.g., ARMEmbedded TraceMacrocell [6],

Intel Processor Trace (IPT) [37], and RISC-V Trace [55]. We

focus on IPT in this paper since it accommodates most appli-

cations in our clusters, but the efficient abstraction designs

can be easily extended to other platforms to support univer-

sal intra-service tracing observability.

As the successor of the Branch Trace Store (BTS) [38]

mechanism from Broadwell generation, IPT features digit-

level overhead and branch-level information. It overcomes

the widely-used Last Branch Record (LBR) [4] on the trac-

ing accuracy and coverage since LBR can only record the

16 or 32 most recent branch pairs. Figure 23 shows that IPT

tracers can be configured and controlled using specificmodel-

specific registers. It collects all indirect branching informa-

tion with different packets and potentially produces hun-

dreds of megabytes of trace data per CPU per second. Each

conditional branch output a TNT packet to record whether it

was taken with a single bit (0x7fa) and each indirect branch

outputs a TIP packet to record the target address (0x7fe). The

traced packets are written to the exclusive memory buffer us-

ing various filter principles like current privilege level (CPL)

and instruction pointer (IP).

However, current hardware tracing capabilities still have

potential improvements to support better tracing observ-

ability. Firstly, the data flow can enhance control flow trac-

ing. Currently, we can use PTWRITE operand [37] or watch-

points [48] to supplement data-flow information. If the un-

derlying hardware natively supports data tracing of specific

variables or addresses, performance debugging would be

more accurate. Secondly, more flexible tracing interfaces can

further improve tracing efficiency. As stated in Section 3.3,

the modification of tracer settings must be done with trac-

ing disabled. If IPT supports hot switching, we can design

more software-friendly abstractions and achieve lower run-

time overhead and stability risks. If IPT supports a unified

memory buffer setting shared across CPU cores, we can de-

sign more portable abstractions and achieve better coverage

compared with per-core design.

6.2 Limitations and Future Work

The current designs of EXIST still have three potential im-

provements which we have left for future work. The first is

the applicable platforms.We plan to extend EXIST to ARM

and RISC-V processors in the future, which covers all hard-

ware architectures in our clusters. The second is worst-case

optimization. EXIST achieves average per-mille level intra-

service tracing overhead at present, but in worst case scenar-

ios, the overhead of EXIST can be higher. We will continue

to optimize EXIST for corner cases in the future. The third is

downstream optimization. EXIST has the ability to optimize

more downstream management like scheduling and compi-

lation, so we will continue to find ways to make use of the

chronological traces in the future.

7 Related Works

7.1 Research on Observability in Datacenters

Large-scale observability involves collecting execution data

from multiple sources to analyze system performance and

further guide system optimization. Generally, observability

solutions can be categorized into two groups: One is inter-

service observability such as Dapper [79], Pivot Tracing [69],

and Canopy [42]. They usually insert tracepoints in network

events to record the behavior of requests while ignoring the

intra-node performance and architecture analysis [35, 97].

The other is intra-service observability, which collects soft-

ware and hardware metrics [92], traces [102], and logs [93].

Two categories of intra-service observation methods have

been widely studied. The first consists of non-chronological

sampling methods, which collect data periodically through



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Xinkai Wang, et al.

Table 5. Functionality comparison with other tracing tools.

InstTrace means tracing instruction sequences, UserTrace

means tracing user-level execution, NoIntrusion means no

injection into software binary, Continuity allows for contin-

uous tracing, Usability means the difficulty to use the tool.

Properties
Linux-native tools SOTA tracing tools

eBPF dTrace sTrace Hubble[68] Argus[88] EXIST

InstTrace � � � � � �

UserTrace � � � � � �

NoIntrusion � � � � � �

Continuity � � � � � �

Usability � � � � � �

probes [23, 46, 50, 59, 70, 77, 94]. The samplers can trace hard-

ware counters and software stacks to gather necessary infor-

mation. They can adjust the overhead by tuning the sampling

frequency but have poor trade-off between informativeness

and performance [68, 89]. Google Wide Profiling [77] is the

most well-known profiling infrastructure that constantly

samples the system to provide statistically accurate analy-

ses [44]. However, it focuses on the statistical characteristics

of applications and ignores causality information [13].

The second category consists of chronological instrumen-

tationmethods, which inserts tracepoints into the program [10,

66, 72]. Schemes like DynamoRIO [10], Valgrind [72], and

LLVM [61] assist in implementing dynamic analyses on dif-

ferent abstraction layers (assembly [68] or library [88]). Com-

pared to the five instrumentation-based methods in Table 5

(three Linux-native and two academic tools), EXIST can eas-

ily capture user-level instruction-granularity traces continu-

ously with no intrusion, while providing satisfactory intra-

service tracing functionality with low overhead. There is also

prior work [98] optimizing the accuracy-overhead trade-off

of instrumentation methods by selecting the most informa-

tion instrumentation points. Overall, most tracing systems

focus on tracing accuracy rather than tracing overhead, and

they are orthogonal and complementary to EXIST.

Besides software tracing methods, there are some domain-

specific hardware designs for processors, which can directly

produce program traces [29, 71]. For example, TIP [29, 30] is a

new hardware component that achieves cycle-level profiling

with minimal overhead. These works have well-crafted hard-

ware designs to further improve the state-of-the-practice

hardware tracing capabilities. EXIST could also serve as the

abstraction over these domain-specific architectures towards

realistic cluster-scale deployment. There is also some prior

work on intelligent trace analysis and automated root-cause

diagnosing [7, 20], which optimize the downstream tasks of

EXIST and can make better use of EXIST in datacenters.

In summary, EXIST is different from existing work and pur-

sues efficient and general intra-service tracing observability in

shared and stressed datacenters.

7.2 Research on Utilizing Hardware Tracing

The hardware tracing capabilities are popular on commer-

cial CPUs, and much prior work has proposed utilizing this

feature for different objectives, which can be divided into

three categories. The first is program debugging [19, 28,

47, 48, 90, 101] by storing program execution snapshots

for post-mortem analysis. Their use of hardware tracing

focuses on post-mortem reconstruction of crash failures,

while we concentrate on runtime tracing for performance

debugging. Therefore, the system designs of using hardware

capabilities are totally different. The second is security en-

hancement [27, 60, 78] such as kAFL [78] that utilizes code

coverage information by IPT to guide fuzzing processes and

Griffin [27] that utilizes IPT to enhance control flow integrity.

The third is exhaustive runtime tracing [13, 95], which re-

ports the execution flow of programs in datacenters. Prior

work like ProRace [95] and DWT [13] focus on combining

tracing with dataflow detection to investigate data-related

problems. There are also prior work that optimizes the trac-

ing infrastructure with emerging memory technology [87]

and more complex programming languages [102], which can

further improve EXIST in interfaces and applications.

To the best of our knowledge, we are the first work aimed at

building efficient and flexible intra-service tracing abstractions

in shared and stressed clusters.

8 Conclusions

Datacenters critically need a full understanding of perfor-

mance anomalies under shared and stressed scenarios, and

the primary challenge is to enable per-mille level efficient

intra-service tracing facilities. We analyze the cause and

effect of tracing overheads in complex scenarios, and in-

troduce EXIST, an extremely efficient intra-service tracing

system using off-the-shelf hardware capabilities. EXIST op-

timizes the control and data paths at the node level and

flexibly orchestrates tracing at the cluster level. Through

extensive evaluations, we show that EXIST achieves up to

10x efficiency improvements and over 90% accuracy in real-

istic clusters. We hope the extremely efficient intra-service

tracing observability enabled by EXIST could enhance the

explainable management of datacenters.
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