L)

Check for
updates

AZ%: Towards Accelerator Level Parallelism for Autonomous
Micromobility Systems

LINGYU SUN, Shanghai Jiao Tong University, Shanghai, China

XIAOFENG HOQOU, Shanghai Jiao Tong University, Shanghai, China

CHAOQ LI, Shanghai Jiao Tong University, Shanghai, China

JIACHENG LIU, The Chinese University of Hong Kong, Hong Kong, Hong Kong
XINKAI WANG, Shanghai Jiao Tong University, Shanghai, China

QUAN CHEN, Shanghai Jiao Tong University, Shanghai, China

MINYI GUO, Shanghai Jiao Tong University, Shanghai, China

Autonomous micromobility systems (AMS) such as low-speed minicabs and robots are thriving. In AMS, mul-
tiple Deep Neural Networks execute in parallel on heterogeneous Al accelerators. An emerging paradigm
called Accelerator Level Parallelism (ALP) suggests managing accelerators holistically. However, there lacks
a specialized and practical solution populating ALP for an AMS, where the varying real-time requirements un-
der different working scenarios bring an opportunity to dynamically tradeoff between latency and efficiency.
Furthermore, accelerator heterogeneity introduces enormous configuration space, and the shared-memory
architecture results in dynamic bandwidth interference.

In this article, we propose A%, a novel AMS resource manager optimizing energy and memory space ef-
ficiency under variable latency constraints. We gain insight from prior Learn&Control scheme to design an
Analyze&Adapt scheme specialized for heterogeneous Al accelerators under shared-memory architecture. It
features analyzing the system thoroughly offline to support two-step adaptation online. We build a proto-
type of A? and evaluate it on a commercial edge platform. We show that A? achieves 32.8% improvements
in power and 13.8% in memory compared with control-based methods. As for timeliness enhancement, A2
reduces the deadline violation rate by 9.2 percentage points (12.8% — 3.6%) on average compared to directly
porting Learn&Control methods.

CCS Concepts: « Hardware — Platform power issues; - Computer systems organization — Robotic
autonomy; System on a chip;

Additional Key Words and Phrases: Resource management, autonomous system, accelerators

This work is supported by the National Key R&D Program of China (No. 2022YFB4501702) and the National Natural Science
Foundation of China (No. 62122053).

Authors’ Contact Information: Lingyu Sun, Shanghai Jiao Tong University, Shanghai, China; e-mail: sunlingyu@sjtu.
edu.cn; Xiaofeng Hou, Shanghai Jiao Tong University, Shanghai, China; e-mail: hou-xf@cs.sjtu.edu.cn; Chao Li (Corre-
sponding author), Shanghai Jiao Tong University, Shanghai, China; e-mail: lichao@cs.sjtu.edu.cn; Jiacheng Liu, The Chinese
University of Hong Kong, Hong Kong, Hong Kong; e-mail: jiachengliu@cuhk.edu.hk; Xinkai Wang, Shanghai Jiao Tong
University, Shanghai, China; e-mail: unbreakablewxk@sjtu.edu.cn; Quan Chen, Shanghai Jiao Tong University, Shanghai,
Shanghai, China; e-mail: chen-quan@cs.sjtu.edu.cn; Minyi Guo, Shanghai Jiao Tong University, Shanghai, Shanghai, China;
e-mail: guo-my@cs.sjtu.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1544-3973/2024/11-ART86
https://doi.org/10.1145/3688611

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.


HTTPS://ORCID.ORG/0000-0002-1326-2654
HTTPS://ORCID.ORG/0000-0003-4372-7851
HTTPS://ORCID.ORG/0000-0001-6218-4659
HTTPS://ORCID.ORG/0000-0003-0378-2311
HTTPS://ORCID.ORG/0000-0003-3764-8065
HTTPS://ORCID.ORG/0000-0001-5832-0347
HTTPS://ORCID.ORG/0000-0003-0034-2302
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3688611
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688611&domain=pdf&date_stamp=2024-11-20

86:2 L. Sun et al.

ACM Reference Format:

Lingyu Sun, Xiaofeng Hou, Chao Li, Jiacheng Liu, Xinkai Wang, Quan Chen, and Minyi Guo. 2024. AZ2: To-
wards Accelerator Level Parallelism for Autonomous Micromobility Systems. ACM Trans. Arch. Code Optim.
21, 4, Article 86 (November 2024), 20 pages. https://doi.org/10.1145/3688611

1 Introduction

Embedded systems are moving towards full automation. In particular, autonomous micromo-
bility systems (AMS), including self-driving minicabs, delivery robots, and drones [34, 60] are
thriving. AMS features limited cost ($1000-$5000 [4]) and low speed (<30 km/h [60]). AMS is com-
monly supported by system-on-chip (SoC) containing CPU and Al accelerators, typically includ-
ing an integrated GPU and 1-2 NPUs [2, 6, 50, 60]. GPU often has higher performance while NPU
achieves better power efficiency [37, 43, 47]. They are commonly connected to a shared memory.
As DNNs gradually become the primary workload on such SoCs, Accelerator Level Parallelism
(ALP) [26, 44] suggests holistically regulating these heterogeneous Al accelerators.

An AMS typically executes multiple DNNs in parallel for perception. A fixed group of DNNs
arrive periodically and share a common latency constraint [39, 60]. The constraint can vary as
the AMS working scenario changes [25, 61]. This brings a resource management opportunity to
save power by scheduling a larger portion of DNNs to energy-efficient but low-performance NPUs
instead of GPUs when the latency constraint relaxes. Accelerator frequency adjustment can also
be applied together for a more fine-grained power-performance tradeoft.

However, there are several AMS-specific challenges for resource management. Firstly, there is a
large configuration space when finding suitable configurations under varying latency constraints.
Specifically, a system configuration in this article includes DNN-accelerator mapping and the run-
ning frequency of each accelerator. This design space grows exponentially with the DNN number.
Secondly, there is dynamic bandwidth contention among accelerators and CPU, resulting from SoC
shared-memory architecture. Contention between GPU and NPUs makes their DNN execution
latency coupled and complicates scheduling decisions. Contention between the CPU and accelera-
tors introduces dynamic interference and could slow down DNN execution unexpectedly. Thirdly,
DNN scheduling also affects memory space usage, which is precious on an embedded SoC. For a
DNN to be executable on an accelerator, an accelerator-specific engine file has to be loaded into
memory. The engine file is essentially a binary that describes the computational operations when
executing a DNN and stores the weight parameters of the DNN. Therefore, a scheduling decision
has to be power efficient while not loading redundant engines to use too much memory space.

Prior works focusing on resource management of edge systems can be roughly divided into
three categories. (1) Learning-based ones [16, 21, 31, 32, 35, 55] handle system complexity well
but fail to handle dynamic interference. (2) Control-based ones [11, 13, 28, 40, 53, 54] react fast to
dynamic interference but are most suitable for simple systems. (3) Learn&Control ones [19, 20, 45]
employ a learner to extract suitable configuration candidates and a controller to switch among
them. Such a combination works well when a configuration switch incurs little overhead. How-
ever, this is not the case for Al accelerators when switching scheduling configurations, which
involves loading new engines. A configuration switch then could not be performed frequently
and timely, which leads to latency constraint violation.

Therefore, we propose A? following Analyze&Adapt scheme, populating ALP for an AMS with
heterogeneous Al accelerators. It extends Learn&Control scheme for better real-time performance
and consists of an offline analyzer and an online adaptor. The analyzer not only learns for suitable
configuration candidates but also profiles system latency characteristics for online fine-tuning. The
adaptor not only periodically switches among pre-learned configurations but also continuously
tweaks the frequency of a selected configuration.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.


https://doi.org/10.1145/3688611

A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:3

The offline analyzer handles large configuration space. It tries to minimize power while keeping
memory space usage small. It first solves a multi-dimensional optimization problem to extract
Pareto optimal configurations and cherry-picks one best configuration candidate for each possible
latency requirement. It then profiles the system to record necessary information supporting online
configuration tweaking. This is realized by profiling workload latency under all frequency settings
in various system statuses.

The online adaptor deals with dynamic bandwidth contention. It prioritizes real-time perfor-
mance by tweaking frequency while trying to adhere to pre-learned configurations in a best-effort
manner. It periodically switches among pre-learned configurations when the latency constraint
or dynamic contention changes a lot. Within the switching period, the adaptor fine-tunes the fre-
quency setting of the selected configuration in a lightweight manner in case of transient contention
fluctuation or spikes.

We build a prototype of A% and evaluate it thoroughly on a commercial edge platform, Nvidia
Jetson Xavier NX. We demonstrate that A? offers nearly optimal power consumption and memory
usage while ensuring timeliness under various latency constraints in multiple setups.

The contributions of this article include three parts:

— Analysis: We analyze the power-performance-memory implications of heterogeneous Al
accelerators on a popular commodity platform. Specifically, we first reveal a DNN scheduling
opportunity for a power-performance tradeoff since the GPU is less power efficient but has
higher performance than the NPU. We then identify that the scheduling decision also affects
memory usage due to engine loading. Finally, we show that memory bandwidth contention
among GPU-NPU-CPU causes performance degradation on DNN execution.

— Design: We introduce a novel resource management scheme of Analyze&Adapt populating
ALP for AMS. It extends the traditional Learn&Control scheme for better real-time respon-
siveness to variable scenarios. During offline analysis, it searches for optimal scheduling con-
figuration candidates lying on the Pareto optimal boundary of power-performance-memory
space. During online adaption, it switches among the candidates infrequently and tweaks
the candidate with fine-grained frequency control to avoid configuration switch overhead.

— Evaluation: We implement and evaluate A% on a commodity edge platform and thoroughly
demonstrate its effectiveness, efficiency, and sensitivity. Experiment results show that A?
achieves 32.8% power improvements and 13.8% memory improvements on average compared
to heuristic-based control methods. It also outperforms the current Learn&Control manager
greatly by reducing the average deadline violation rate from 12.8% to 3.6%, and the deadline
violation extent of 99th tail latency is less than 5ms.

2 Background and Related Works
2.1 AMS Software and Hardware Overview

The software workloads of AMS consist of two parts: workloads for acting autonomously and
workloads for advanced functionalities, as shown in Figure 1. Workloads for autonomy contain
three stages [14, 39, 60]: sensing, perception, and decision making. The sensing stage collects raw
data and synchronizes their timestamps [60]. The perception stage uses various DNNs to perform
object detection, semantic segmentation, and so on. It also employs some CPU algorithms to locate
itself. The decision-making stage summarizes all extracted information and generates signals for
system control. An AMS also offers advanced functionalities, including high-res video recording,
face detection, or speech recognition. In this article, we focus on resource management of DNNs
within the perception stage since it can account for more than 94% of computation [39].

The DNNs involved in the perception stage have three key characteristics: First, their num-
ber and type are fixed during run-time determined by sensor number [58], which is typically

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:4 L. Sun et al.
—| (a) Learning-based Managers |- Complex
[ Learn | pepioy 2% Sl
- FePIoY_ System
Workloads for Autonomy b) Control-based Managers i
Sensing Perception  Decision || Workloads 1 — _(_ )_ — 2 Config D?nn::)l-.eic
Software DNN Inference] [Rules for Advanced v Profile __ —» Control 3= System
Layer Localizat 2{2 Functionalities eedback
|_Localization J A = (c) Learn&Control Managers o Complex
Resource Manager Control | [“°"9|  Dynami
———————— o8 - | Learn H (Select) } - CPU cores
| Efficiency “ Performance | Feedback
ManLagement | Power, Mem, etc. Tradeoff f Latency | —| (d) Analyze&Adapt M s
ayer |fo——=-—=-—1 N V -
Runtime Library & Operating System Analyze Adapy lContig|  Complex
TensorRT, ROS, Ubuntu, etc. [ Leam Se‘ect ] Dynamic
5 Hetero Al Acc
Hardware [ C":U ] [ GZU ] [ Ailc ] [ A:S:IC ] [ Profile F_%:eedback
Layer [ Shared Memory ] < Offline Component Online Component

Fig. 1. AMS architecture. Fig. 2. A classification of edge resource managers.
10-20 [50]. Second, the fixed collection of DNNs executes periodically under a common latency
constraint, which changes dynamically depending on the vehicle speed and the environment com-
plexity [15, 25, 61, 62]. The constraint is usually several hundred milliseconds [11, 60]. Third, there
is no data dependency among DNNs since each DNN is responsible for perceiving independent
sensor inputs [58]. Admittedly, some recently proposed perception methods suggest integrating
multi-sensor data through a single fusion-based DNN [24, 27, 48]. Nevertheless, a fusion-based
DNN is composed of multiple independent backbone sub-models and one head sub-model. The
backbones’ intermediate results, or extracted features, are aggregated as the input of the head
sub-model. Since the backbone sub-models condense high-resolution raw inputs into small-scale
features, they account for most of the execution time of a fusion-based DNN [49, 56]. The backbone
sub-models can use different DNN models depending on sensor modality and importance [38, 42].
Therefore, the identified three key characteristics of AMS perception DNNs are also applicable to
the backbone sub-models in a fusion-based architecture.

AMS is commonly supported by SoCs carrying GPU and NPU for DNN inference and following
the shared-memory architecture [12, 41, 46]. The main memory capacity is relatively small and
needs to be used conservatively [12, 30]. Since CPU and accelerators are all connected to the same
memory controller, they also contend for memory bandwidth [57]. In this article, we focus on the
management of heterogeneous Al accelerators since they are relatively independent of the CPU.
The memory bandwidth usage from the CPU side is considered a source of dynamic interference.

2.2 Classification of Edge Resource Managers

Autonomous micromobility systems are gaining popularity in both academia [9, 29, 34, 40, 50, 60]
and industry [2, 6]. Most importantly, Shi-Chieh et al. present their architectural implications [39].
This work lies in the context of designing resource managers for DNN execution. The resource
manager interacts with system runtime and OS to balance between efficiency and performance.
Prior work in this context mainly considers using GPU alone [11, 53] or using both CPU and
GPU [31, 40, 55]. Some works discuss heterogeneous accelerators yet overly focus on pre-silicon
design [32, 34, 36, 57]. This article fills in the gap of managing AMS with heterogeneous Al accel-
erators on a commercial platform.

Learning-based managers are designed for complex static systems (Figure 2(a)). It leverages
machine learning or optimization for design space exploration offline, generating a single output
configuration to be deployed. Most managers designed for heterogeneous systems fall under this
category. Sheng-Chun et al. design an offline DSE method mapping DNNs to sub-accelerators [32].
They ignore memory bandwidth contention caused by co-running CPU tasks and have no

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:5

real-time consideration. Woosung et al. propose an offline optimization approach to schedule
multiple DNNs on CPU and GPU in layer granularity [31]. Their approach involves Worst-Case
Execution Time (WCET) analysis like [55]. This can be overly conservative when the interfer-
ence level is low. Pablo et al. discussed a scheduling framework called POAS (Predict, Optimize,
Adapt, and Schedule) to achieve ALP [44]. However, it is evaluated for matrix multiplication, and
the implemented scheduler is purely static.

Control-based managers are designed for simple dynamic systems (Figure 2(b)). It relies on for-
mal control theory or heuristics to react to run-time variation. The general pipeline involves mon-
itoring, tuning, and receiving feedback. Soroush et al. suggest optimizing accuracy and power
simultaneously while offering predictable latency for multiple DNNs on one GPU [11]. It solely
relies on frequency tuning using LAG analysis and cannot handle the complexity of heterogeneity.
Liangkai et al. designed a framework to coordinate multiple DNNs on one GPU [40]. They study
many DNNs and claim the existence of a large latency variation of DNNs. However, DNNs used in
this article are “proposal-free” models that are widely used in the industry. They have very stable
latency.

There are also Learn&Control resource managers (Figure 2(c)) designed for a heterogeneous CPU.
It learns several suitable configuration candidates and selects among them with an online con-
troller. The learning process can be offline, semi-offline with online updates, or even purely online.
This scheme is suitable for complex dynamic systems. Nikita et al. first propose the Learn&Control
model while ignoring the emerging ALP trend and the importance of management timeliness [45].
Bryan et al. suggest using online reinforcement learning for a Learning Classifier Table to guide
a feedback controller tuning frequency for a many-core system [20]. They target irregularly arriv-
ing tasks with a work queue, which is different from AMS perception. we argue that traditional
Learn&Control has deficits in real-time when a configuration switch incurs overhead and cannot be
performed frequently enough. This is the case for heterogeneous AI accelerators. Correspondingly,
we offer a novel scheme named Analyze&Adapt in Figure 2(d), which features tweaking a selected
configuration for better timeliness.

3 Motivation
3.1 Understanding Accelerator Specialties

Understanding the specialty and weakness of accelerators is critical for achieving efficient ALP. We
conduct our experiments on Jetson Xavier NX, a commercial system-on-module equipped with 1
GPU and 2 ASIC Deep Learning Accelerators (DLA) (detailed in Section 5). The frequency of
GPU can only be set to 12 fixed levels, while the frequency of DLA can be set to arbitrary values.
Their minimal frequencies are both at about 300 MHz, and their maximal frequencies are both at
about 1100 MHz. For a clear comparison, we evenly select 12 frequency levels among all available
ones for DLA. In summary, the frequency levels for GPU in MHz include 306, 408, 510, 599, 752, 803,
854, 905, 956, 1007, 1058, and 1109. The selected frequency levels for DLA in MHz include 320, 384,
448,512, 576, 640, 704, 768, 832, 896, 960, and 1024. To demonstrate the power-performance charac-
teristics, we record the latency and power consumption of YOLO-v3, a widely used DNN for object
detection, on each accelerator under every frequency level and present the results in Figure 3.
From the power perspective, GPU consumes 2x-4x more power than DLA in all frequency
settings. But from the performance perspective, the execution latency on DLA is also 1.6x-2.5x
higher than GPU. Combined with detailed findings on other ASIC NPUs [37, 43, 47], we believe
such power-performance trade-off for GPU and NPU on edge is not uncommon. On the one hand,
GPUs are more flexible in accelerating most parallel tasks, so manufacturers would be eager
to equip a relatively powerful GPU as the main accelerator for versatility. On the other hand,

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:6 L. Sun et al.

120 1000

-DLAlatency "
-0-GPU-latency < ¥ s
100 -DLA 800 g DR T I B
. -power . s 25 Heavier H Heavier More severe
£ 0 "O-GPU-power 2 E,0 | Accelerator . B8 | CPU for GPU task
= 600 £ B interference , More severe [ interference ,
g § g , for DLA task Be ,
k] 400 & g | g a .
40 & 4 1 5
E s ‘o . L £ 2 /| ﬂ
2 g £, LM il
o GPU Task DLA Task o GPU Task DLA Task
0 0 GPU+DLA | GPU+2DLA | GPU+DLA o GPU+2DLA
12 3 4 5 6 7 8 9 1011 12 = Min Freq Min Freq Max Freq Max Freq O 1 stresser 02 stressers O3 stressers
Frequency Level (Low C (Medium C i (High C ) @4 stressers W 5 stressers
Fig. 3. Accelerator Specialties. Fig. 4. The impact of inner mem- Fig. 5. The impact of outer mem-
GPU excels in performance, while ory contention. The mutual influ- ory contention. The influence of
DLA excels in power. ence between GPU and DLA is CPU on GPU or DLA is studied.

studied.

NPU accelerators can only run limited functionalities but achieve better power efficiency. The
manufacturers would tend to allocate a small percentage of the die area to them, thus weakening
their performance. For example, the GPU die area of NVIDIA Xavier is about twice as large as
its NPU [1]. Another example is the higher-end NVIDIA Orin. Its GPU provides up to 170 Sparse
TOPS (Tera Operations Per Second) of INT8 Tensor compute, while its two NPUs could only
provide 75 TOPS in total [2]. This trade-off resembles the big. LITTLE architecture of ARM CPUs.

In summary, accelerator specialties raise management complexity but also bring power-saving op-
portunities. When the latency constraint is relaxed, the NPUs’ specialty manifests itself as the ability
to execute DNNs more efficiently. Contrarily, GPU’s specialty stands out to execute DNNs faster.

3.2 Understanding Memory Challenges

321 Memory Capacity Challenges. Since the main memory is shared among multiple proces-
sors, it is critical to save precious memory capacity to accommodate more advanced functionalities
in AMS [30]. Take Xavier NX as an example, the total memory capacity is 8 GB with only 6 GB avail-
able for run-time management. The memory usage of studied DNNs is shown in Table 1, and their
engines occupy about 200-300 MB. The engine of a DNN is essentially a binary that describes the
computational operations when executing a DNN and stores the weight parameters of the DNN.
To schedule a DNN on a particular accelerator, its corresponding engine for that accelerator must
be loaded into memory before execution.

Loading all engines for each accelerator brings better scheduling flexibility but also increases
memory usage. If we pre-load the engines of all three types of DNNs in Table 1 on all accelera-
tors (3%3=9 engines) for flexible and warm online scheduling, 50% (3 GB) of the memory capacity
would be occupied for engines. Considering that CPU tasks also need memory space to hold data,
including high-res maps, the memory footprint of DNNs is too large. However, if we sacrifice flex-
ibility and only pre-load a single type of DNN for specific hardware (1x3=3 engines), the memory
footprint could be reduced to only 900 MB, saving up to 70% of memory. But in such a case, the
DNN-Accelerator mapping is fixed. Execution latency and power consumption may be suboptimal
when the working scenario changes.

3.2.2 Memory Bandwidth Challenges. Executing DNNs concurrently on GPU and DLAs could
result in memory bandwidth contention and slow down all of them compared to running separately.
We denote such memory contention between heterogeneous accelerators as Inner Memory Con-
tention (IMC). We denote it as “inner” since the contention happens within the DNN accelerator
subsystem. Meanwhile, CPU tasks for localization and other advanced functionalities often run
simultaneously with DNN inference tasks in AMS. We denote the memory contention between
CPU and accelerators as Outer Memory Contention (OMC). We denote it as “outer” since the

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:7

~
N}
15}

1st period 27 period 3rd period

i
E210
>
Table 1. Summary of Representative DNNs 2 200 Lt raint
2 ol ) e— atency constraint
5
DNN YOLOv3-416 [ Resnet101 | VGG16 S 150 Config Over-tie
Functionality Object detection | Backbone net for many tasks ‘g Occasional Spikes; Latency Plateau 9 4
Number of layers 106 101 16 L;u‘é 170
Mem Usage (GPU) 299 MB 199 MB 631 MB 160
Mem Usage (DLA) 266 MB 146 MB 486 MB —o-Learn&Control ~ —~Analyze&Adapt - - Latency Constraint

Fig. 6. Weakness of current Learn&Control schemes.

contention is caused by the CPU, which is outside the DNN accelerator subsystem. The optimiza-
tion of CPU tasks is heavily studied and CPU tasks are merely considered as a source of dynamic
interference to the accelerator subsystem in this article.

To thoroughly analyze the memory bandwidth challenges, we first study the IMC by co-running
DNNs on different accelerator combinations, as shown in Figure 4. For GPU tasks (the first bar
group), we fix the GPU frequency at the maximal and execute YOLO-v3 on it. We introduce IMC
by simultaneously deploying independent YOLO-v3 on 1 or 2 DLAs with minimal or maximal DLA
frequency. The bars report the performance degradation of YOLO-v3 compared to running on the
GPU alone (23.2 ms). Similarly, for DLA tasks (the second bar group), we fix the frequency of DLAs
at the maximal and execute YOLO-v3 on 1 or 2 DLAs while deploying independent YOLO-v3 on
GPU with minimal or maximal GPU frequency. The bars report the performance degradation of
YOLO-v3 compared to running on 1 DLA alone (47.1 ms). Note that the frequencies of the two DLAs
have to be the same due to driver limitation. For clarity, the co-running setups are roughly divided
into low, medium, and high contention levels. Overall, more co-running accelerators and higher co-
running accelerator frequency can both lead to higher IMC and cause performance degradation.
The GPU+2DLA Min Freq setup may cause higher degradation than GPU+DLA Max Freq setup
since it has more co-running accelerators, although with lower co-running accelerator frequency.
Therefore, finding suitable configurations for multiple DNNs becomes difficult since their total
latency cannot be obtained by studying each accelerator separately.

Then, we study the OMC by running different numbers of memory bandwidth stressors to mimic
CPU workload interference. Each memory stressor executes the memrate test of stress-ng tool [3]
with a reading rate of 5 Gb/s and a writing rate of 1 Gb/s, consuming around 5% of memory band-
width. We dispatch 1-5 stressors to create different levels of OMC. The resulting performance
degradation is shown in Figure 5. The setup of two bar groups is the same as Figure 4, which fixes
the frequency of GPU or DLA at the maximal and executes YOLO-v3. Both accelerators suffer
from more severe performance degradation as the memory bandwidth usage of the CPU work-
load increases. The management scope of the resource manager in this article does not include
the CPU. The CPU workload is not the performance bottleneck for autonomy, and CPU manage-
ment has already been well-studied. Memory bandwidth usage from the CPU side is considered a
source of dynamic interference in the DNN accelerator subsystem. Such run-time variation has to
be managed to avoid unexpected deadline violations.

In summary, memory management challenges arise since the considerable demand on memory
capacity and bandwidth for DNN inference conflicts greatly with the limited hardware resource of
AMS. On-demand engine loading and interference awareness should be carefully and dynamically
considered.

3.3 Learn&Control: Limitations

Current Learn&Control schemes are equipped with a simple online controller which periodically
consults a learned reference table to decide the most proper configuration as system dynamics

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:8 L. Sun et al.

fluctuates [19, 20, 45]. We port such a scheme to heterogeneous Al accelerators for minimizing
power consumption under the 190 ms latency constraint, as shown in Figure 6. This corresponds
to detecting objects about 5m away from the AMS [60]. Each data point represents executing 5
YOLO-v3 and 7 Resnet101 in total under a particular configuration. A configuration includes DNN-
accelerator mapping and frequency setting. The Learn&Control can handle IMC. Since IMC is static
for any given configuration, it can be implicitly factored in during offline reference table learning.
However, it has limitations when dealing with OMC, which depends on CPU workload and can be
very dynamic during runtime.

In the first period, we shortly invoke the memory stressor twice to produce transient OMC
spikes. When the second period begins, we permanently launch the memory stressor to produce
a steady OMC increase. Such a procedure is employed to demonstrate the OMC pattern of CPU
tasks in a controlled manner: Depending on the working scenario, the co-running CPU task can
be different and cause large and steady OMC change [14, 59]. Meanwhile, sporadic user requests
like speech recognition on the CPU can also cause transient bandwidth fluctuation. During the
first period of Figure 6, the Learn&Control execution latency exceeds the latency constraints due
to OMC spikes. During the second period, the controller requires much time to react and load
new engines, which results in the latency plateau. At the start of the third period, a newly optimal
configuration is finally applied while Learn&Control schemes over-tune the system and cause
wasted latency slack. This over-tune leads to 0.3 w power waste (10% of total dynamic power, 3 w).

The limitation of Learn&Control manager lies in configuration switching overhead. A config-
uration switch consists of two steps. The CPU first loads DNN engines for the new destination
accelerator into memory, while the acceleration subsystem still follows the old configuration. New
scheduling and frequency settings are immediately applied once loading finishes, whereupon use-
less engines are cleaned up. Such configuration switches cannot happen frequently for two rea-
sons. First, loading and cleaning typically take seconds, according to our experiment and prior
works [10], which is significantly longer than common latency constraints of several hundred
milliseconds. Second, memory space usage is high during configuration switch, and frequently
doing so cancels out the benefit of on-demand loading. In summary, it is critical to design a novel
management scheme with superior timeliness under dynamic interference.

4 System Design
4.1 Overview of A?

Figure 7 shows the design overview of A% It bridges software and hardware by integrating an
offline analyzer and an online adaptor.

When an AMS manufacturer finalizes the DNNs used for perception and the SoC model, the
analyzer component plays its role. Its primary duty is to learn the most efficient configurations un-
der all possible working conditions (i.e., different latency constraints). The analyzer achieves this
by learning Pareto optimal configurations with distinct trade-offs between multiple efficiency ob-
jectives under various latency constraints. The secondary duty of the analyzer is to profile system
latency sensitivity towards configuration fine-tuning. Such information complements the discrete
searched configurations by understanding how their execution latency reacts toward frequency
tweaking.

After an AMS is put into operation, the adaptor component regulates it to ensure timeliness
while trying to attain maximal efficiency. It is capable of reacting to dynamic interference from
the CPU side. Periodically, a new base configuration is selected if latency constraint changes or
CPU interference level experiences a large steady change. Meanwhile, the frequency setting of the
selected configuration gets tweaked continuously in case of transient memory fluctuation.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:9

Software Analyze&Adapt Resource Manager for AMS Hardware| 106

___________________________________________

H Learn Select

®
05«08

g:":’ 3 || Pareto Optimization ?r‘;’l;;’g > Table Lookup
Power & Memo Invoked Periodicall
DNNs (target) ( ) . nvoked Periodically

1
!

1

1

1

!

1

3 1

® i Base Config 1
! 1

g w !
]

1

!

1

1

1

!

1

DLAQ [3[72To[+[c[o]7[c[7]o]8]5]7]6]

Ordering Mapping  Freq Setting

GPU
BOANAENHEE
PMX 2-Point 2-Point
j::} [a[3]2[o[1[a[1]0[C]E
4

Profile Charact- Tweak

Co-run Jobs || P> |System Measurement] f| erization p{[__Frequency Adjust
Latency < Freq Table | |[Engaged Continuousl
(N i :

e {} crossover

12 -
FRAREE 0 REE C B

1| Shared I} Mutate

1
!
1
L=
Adapt M Memory | [a[i[2[o[s[ATelolclc sl

Applied Config

Varying
Constraints LLENZ

Fig. 7. A? design overview. The two gray rectangles in the middle are  Fig. 8. Illustration of our gene de-
intermediate data structures. sign and genetic algorithm (GA).

4.2 Offline Analyzer Component

4.2.1 Learning Optimal Configuration Candidates. As stated in Section 2.1, workloads of AMS
are usually fixed and recurrent with flexible latency constraints. Current learning models are com-
plex and not suitable for AMS [19, 20, 45] since their assumption is that tasks arrive irregularly and
are pushed into a task queue. We choose to customize the GA to solve a Pareto optimization prob-
lem and then cherry-pick final configuration candidates further. GA is an effective Design Space
Exploration (DSE) approach with one main deficiency of being time-consuming. However, this
does not matter since the optimization happens purely offline, which exempts the necessity of
using overcomplicated algorithms. The optimization is performed only once for a fixed group of
DNNs and a specific SoC board.

Specifically, we design our algorithm based on NSGA-II [17], a popular multi-objective optimiza-
tion algorithm. In NSGA-II, each configuration is encoded into a gene as Figure 8. A configuration’s
gene contains both scheduling and frequency setting of all DNNs. We further split the scheduling
part into ordering (deployment order) and mapping (DNN-Accelerator mapping) as in [32]. DNN
with a smaller ordering number deploys earlier on GPU (G), DLAO (0), or DLA1 (1) with a specific
frequency level. The power, memory, and latency value of each explored configuration is obtained
by executing it multiple times on the real machine and taking the average.

Take five DNNs as an example. Initially, a random set of genes is sampled to become the initial
population, and the initial genes are sorted by dominating relationship and crowding distance
to select elite genes. A gene dominates another when it is better on all objectives, and crowding
distance prefers sparsity [17]. Elite genes crossover with each other (in red squares) and then
mutate (in black squares) to produce the next population. We apply formal Partially Mapped
Crossover (PMX) [23] on the ordering part and simple 2-Point Crossover [51] on mapping and
frequency parts. With the genetic learning algorithm, configurations lying on the Pareto boundary
in power-performance-memory space are obtained.

Further cherry-picking is needed after obtaining the 3-dimensional Pareto boundary. Firstly, we
require only one best power-memory configuration for each possible latency constraint. This best
configuration has to achieve both low power and small memory usage. Secondly, the frequency
settings of any picked best configuration must be elastic enough to leave space for the online
tweaker to boost frequency and reduce latency when necessary.

We design an algorithm to cherry-pick the configuration with the following properties in order:
having acceptable worst-case latency, near-minimal power usage, and minimal memory. We di-
vide the Pareto boundary in 3D space into latency bins of 10 milliseconds wide, which produces a
2D Pareto boundary slice in each bin. One best configuration in the slice is selected. According to

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:10 L. Sun et al.

ALGORITHM 1: Configurations Cherry-picking Algorithm

Require: Cg,; > All configs explored
P, > Power threshold beyond minimum
M, > Memory cost per saved watt threshold
Ensure: Cg.; > Best configs selected
1: for each latency bin lat do
2. // First filter configs by worst-case latency
Critr1 < cin Cyy[lat] if WorstLat(c) < lat
// Then filter configs by near-minimal power
Ppin < Min([Power(c) for ¢ in Crjsr1])
Crisra < ¢ in Crpppy if Power(c) < Pmin + Py
// Finally select config with minimal memory
Ceana < Argmin([Mem(c) for c in Cry;r2])
// See if Memory cost per saved watt is worthy

10:  if Mem(Ceang) > Mem(Cseq[lastLat])
Mem(Ceana)-Mem(CserllastLat])

h A A

and Power(Cyei[lastLat])~Power(Ceana) > M;p, then
11: Cseillat] « Cyei[lastLat]
12:  else
13: Cselllat] « Ceana
14:  end if
15:  lastLat = lat
16: end for

our experiments, the 2D Pareto boundary slices in power-memory space are generally not smooth,
such that conventional intuitive methods preferring “turning points” would not work. Therefore,
we designed a concise algorithm detailed in Algorithm 1. For each latency bin (Line 1), we first
filter all the configurations according to their worst-case latency (Line 3). The worst-case latency
is obtained by overwriting a configuration’s frequency settings to maximum and executing it un-
der a pre-defined worst-case outer memory bandwidth level. Then, the selected configurations are
further filtered based on power usage (lines 4-6). Finally, a candidate with minimal memory usage
is selected (Line 8). However, an inconsistent situation may happen due to insufficient exploration
or randomness during learning. This candidate may consume much more memory compared to
the previously picked one in the last latency bin with marginal power saving. To avoid such incon-
sistency, we allow memory usage growth only if the subsequent memory increase per saved watt
is less than M, (Line 10). Otherwise, we reuse the selected configuration of the previous latency
bin instead (Line 11). Eventually, the C;,; of each possible latency constraint bin is saved as a refer-
ence table for online lookup. Several hyper-parameters including P;; and M, can be user-defined,
bringing flexibility to customize for different trade-off considerations.

4.2.2  Profiling Latency Sensitivity Characteristics. Since we will tweak the frequency setting of
a selected configuration for better real-time ability, there has to be extra information regarding
its latency sensitivity toward frequency tuning. Therefore, the analyzer also characterizes system
latency sensitivity under various running conditions through profiling. We choose to collect the
latency of each DNN type running on any accelerator (GPU or DLA) under each frequency setting
while taking IMC and OMC into consideration. The information is organized into a nested-hash-
table data structure, characterization table, for lightweight online lookup.

In more detail, we build a characterization table for each DNN type involved in the AMS percep-
tion stage. Although there can be many independent DNNSs in total, as mentioned in Section 2.1,

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:11

@: Accelerator Frequency
@: Co-running Accelerator Combination
@®: Memory R/W Level from CPU

. < (@Review | ®) Predict >
3| . o IR ] 1 ]
S - ¢5 - - GPU  [_DNNO 1 __DNN1 !
® - s ® - ry DLAO [ DNN2 | DNN3 -
= A - ° . 1 0) pLat | DNN4 time
® e ; ! Decision interval
[€) @ Current Decision Point DEADLINE
Fig. 9. The construction process of the characteri-  Fig. 10. Illustration of multiple DNN execution and
zation table corresponding to three system status. the three steps (review, predict, and decide) during

tweaking at each decision boundary point.

most of them would be independent instances of the same DNN type, like YOLO for object de-
tection and Resnet for image classification. Therefore, the number of characterization tables can
be kept small. In our implementation, we consider convolution-based DNN architectures for im-
age processing. We execute each DNN type on our target Jetson board and measure its latency-
frequency curve at all possible accelerator frequency levels (see the leftmost part of Figure 9).
The characterization table contains multiple such curves under several typical GPU-DLA-CPU co-
running setups to guide frequency fine-tuning in different system status (Section 4.3.2). Its building
procedure is illustrated as follows.

First, to incorporate IMC, we measure the latency-frequency curve under several typical ac-
celerator co-running setups. Suppose our target DNN runs on the GPU. We profile accelerator
co-running setups, including GPU running alone, with 1 DLA or 2 DLAs. To reduce the amount of
profiling, the co-running DLAs execute YOLO at either the highest or the lowest frequency. (Note
that the frequency of the DLAs has to be the same.) A sketch of the resulting curves is shown in the
middle part of Figure 9. During runtime, when the co-running accelerator is not at the highest or
lowest frequency, we can interpolate the corresponding latency-frequency curve. During runtime,
when the co-running accelerator is not executing YOLO, we make a compromise by still using the
profiled latency. Evaluation in Section 6 shows that the overall deadline satisfaction is still good.

Second, to incorporate OMC, we repeat the first step under several typical CPU memory band-
width usage levels. In our implementation, we run 0-5 memory stressors introduced in Sec-
tion 3.2.2 to create six stable OMC levels. This results in the final three-dimensional table shown in
the rightmost part of Figure 9. The characterization table is platform-specific and has to be rebuilt
when using new hardware platforms. However, the rebuilding only takes 1-2 hours for each DNN
type, which is small and easily affordable during the offline phase.

4.3 Online Adaptor Component

4.3.1 Selecting Base Configuration Periodically. Selector switches the base configuration in re-
sponse to two circumstances: 1) Latency constraint varies due to changes in the working scenario;
2) Outer memory interference would experience a large and steady change due to the launch
of a new long-term workload. The selection process follows the typical feedback control proce-
dures [18] and is triggered periodically. To decouple the management of accelerators from the
CPU, we design the selector to be unaware of the launch of a CPU workload. It conservatively
computes the 90th tail latency slowdown during the last period as the estimation of the current
outer contention level. It then decides whether to switch configurations by looking up the ref-
erence table generated by the cherry-picking algorithm in Section 4.2.1. The base configuration
selected contains both DNN-accelerator mapping and accelerator frequency setting. Since alternat-
ing DNN-accelerator mapping incurs much overhead, the selection can only happen infrequently.
Rapid changes or bursts are handled by the tweaker in the next section.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:12 L. Sun et al.

4.3.2  Tweaking Configuration Frequency Continuously. Tweaker fine-tunes frequency setting of
a base configuration in case of transient outer memory interference. Different from fine-grained
per-layer dynamic voltage and frequency scaling (DVFS) [13] or coarse-grained per-execution
DVES [22, 63], we design a medium-grained DVFS mechanism. More specifically, we find that
per-layer DVES suffers from non-negligible overheads due to its unnecessary fine granularity. On
Jetson Xavier, tuning hardware frequency takes ~1 ms, 10X larger than the execution time of one
DNN layer. On the contrary, the per-execution DVFS approach only boosts execution once for all
DNNs, which could be too coarse-grained to handle short-term interference.

We extend LAG analysis [11, 13, 52], widely used in real-time systems, to the heterogeneous
hardware scenarios. In LAG analysis, LAG describes how far ahead or behind a task is compared
to the deadline. It is defined as the difference between the predicted task finish time and task
deadline. A controller could then boost or slow down the system according to the LAG value at
any time. The most critical step in LAG analysis lies in finish time prediction. A* makes boost and
slowdown decisions at the end of each DNN inference task. As shown in Figure 10, the end of each
DNN inference task divides the whole execution period into multiple decision intervals. At each
interval boundary, the progressive mechanism takes three steps to decide a proper adjustment for
the next interval.

In the first step, the latency of the last execution interval is reviewed and compared to the
characterization table to infer the current level of OMC. The review window contains the latest
three decision intervals and takes their average OMC level as the inferred current one. This
helps reflect the most recent OMC status. Since most intervals would not witness a full DNN
execution (e.g., DNN2), we could not directly compare a measured interval to data stored in
the characterization table. This calls for the maintenance of the progress of each DNN at each
decision boundary. The progress of DNNs that have not yet been finished is updated according to
the inferred OMC level. In more detail, at the “current decision point” shown in Figure 10, we first
derive the current contention level utilizing the characterization table. For a given co-running ac-
celerator combination and accelerator frequency, the characterization table provides a one-to-one
mapping between DNN latency and OMC level. Denote the length of the last decision interval as
t1qst and the progress of DNN2 at the last decision point as ppnn2. We compare t45;/(1 — ppNN2)
to the closest latency of DNN2 stored in the characterization table and take the corresponding
OMC level as the inferred current level. Then, we can use the inferred OMC level to update
the progress of DNN1 and DNN4. Take DNN4 as an example, denote its latency at the inferred
OMC level stored in the characterization table as tpyn4, then we can update ppnn4 such that
PDNN4+ = tiast /tDNN4-

In the second step, the remaining execution time is predicted to decide whether to boost, slow
down, or do nothing. The predict window covers all remaining execution time in the current multi-
DNN execution period. It assumes the execution still follows the base configuration later and con-
sults the characterization table to get the execution time of each future interval iteratively. All
latency values of future decision intervals are accumulated to get the finish time prediction. We
can then calculate LAG and tune frequency accordingly. Additionally, we find that there might be
incorrigible deadline violations during each multi-DNN execution period. Later decision points
in each period may be unable to reduce latency sufficiently even if it has boosted accelerator fre-
quencies to the highest value when an unexpectedly high OMC spike appears. As a result, we
have to tune accelerator frequencies to higher values than just enough at early decision points.
Therefore, we multiply a conservative factor, which is larger than 1, to the predicted remaining
execution time at each decision point. We calculate LAG using this amplified remaining execution
time prediction to decide the accelerator frequencies before the next decision point. The initial
value of the conservative factor at the start of each multi-DNN execution period is set as a fixed

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:13

Table 2. Experiment Platform Specification Table 3. Description of Evaluated Schemes
Device Nvidia Jetson Xavier NX Scheme Descriptions
CPU 6-core Carmel ARM v8.2 Race-to-idle [33] | Highest freq then idle, GPU+2DLA
GPU 384-core Volta GPU with 48 Tensor cores NeuOS [11] Fine-grained frequency tweaking only, GPU+1DLA
CALOREE [45] | Pareto learner + Periodic selector
Memory | 8GB LPDDR4x shared mem (59.7 GB/s) Az Anal .
nalyzer (learner+profiler) + Adaptor (selector+tweaker)
Accelerator | 2x NVDLAs A7 power A% minimizing power
System Jetpack 4.6.2, Ubuntu 18.0.4, TensorRT 8.2 AZ_mem A? minimizing mem

hyperparameter. Its value drops to 1 linearly with time until the deadline of each period, which
helps avoid over-compensation.

In the last step, a proper frequency for the next decision interval is decided. The decision window
only includes the time until the next DNN finishes (a single decision interval). The corresponding
frequency tuning register in the Linux /sys directory is modified to apply the frequency change.
We implement the progressive tweaker to execute asynchronously with workloads in a separate
thread. So, the management logic will never affect the critical path of system execution.

5 Evaluation Methodology
5.1 Platform and Benchmarks

We implement A? on a commercial edge platform for AMS, NVIDIA Jetson Xavier NX, detailed in
Table 2. This platform originally provides nine hierarchical power modes with 10/15/20 w power,
and we choose the maximum one MODE_20W_6CORE as the basic power mode, overwriting its de-
fault frequency settings. Both GPU and DLAs have 12 optional frequency levels. An onboard power
meter (T INA3221x) updated at 5 ms intervals captures power readings with default smoothing
mode disabled. All power consumption values are dynamic power of acceleration subsystem, ob-
tained by subtracting static power reading from 5V_IN power rail readings. System static power
is about 4.2 watts when the CPU is idle.

Due to the unnecessary complexity of commercial systems, we mimic the perception stage of
AMS with a mix of YOLOv3-416 and Resnet101 (detailed in Table 1) to evaluate A? (memory usage
of VGG16 is too huge to adopt). Two different setups are evaluated: 12 DNNs (5 YOLO and 7
Resnet) and 16 DNNs (10 YOLO and 6 Resnet). Since DLA does not support FP32, we both use
FP16 on GPU and DLA for fairness. We generate DNN engines with TensorRT instead of Pytorch
or Tensorflow since it is specialized for high-performance inference and supports DLA better. For
compactness, we evenly divide all latency constraints tested into tight/mid/loose ranges. For 12(16)
DNN setups, the minimal latency constraint is set to 150(240) ms, and each range contains 5(7)
latency constraints with 10 ms intervals. The result obtained for each range is an averaged value
of 5 or 7 latency constraints.

5.2 A? Design Specification

Our implementation takes about 1 k LoCs in C++ and 2 k LoCs in Python. The engines for accel-
erators are compiled in advance for deployment. The offline Analyzer is implemented in Python,
while the online Adaptor is in C++ for fast execution. During online execution, we additionally
create stress-ng memory stressors on the CPU as a synthetic interference generator. We use syn-
thetic generators for better controllability. The generator has both steady and transient variations
to simulate the real CPU workloads of an AMS.

In more detail, we designed the following process to simulate a real AMS working condition
in a controlled manner. Starting from the idle state, the number of CPU memory stressors is
first increased every 30 s until five and then decreased until zero. Some additional CPU memory
stressors are randomly generated to simulate spikes. In the meantime, DNN inference tasks run

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:14 L. Sun et al.

‘ WA2 @CALOREE mNeuOS MRace-to-idle [A2_power_only EIA2_mem_only ‘

| tight mid loose
(a) 12 DNNs setup (b) 16 DNNs setup

tight mid loose tight mid loose

Fig. 11. A comparison of power and memory optimization effectiveness. (Lower is better.)

periodically on accelerators, and a resource manager adjusts configuration dynamically. For A?
and Learn&Control managers, a configuration switch happens every 45 s. We choose 45 s to avoid
the selector working in lockstep with the increase(decrease) of memory stressors. Otherwise, the
selector would behave very poorly since its contention level estimation would always be wrong.

The hyper-parameters in the GA, including iteration and population size, are set to 80. In
Algorithm 1, Py, is set to 0.5, and M;y, is set to 300. The initial value of the conservative factor is
set to 1.2 and will linearly decay to 1.

5.3 Points of Comparison

We compare A? to five baselines as shown in Table 3. Race-to-idle [33] is simple yet proven to be ef-
fective in many scenarios. It evenly distributes DNNs to accelerators at the highest frequency. Once
the execution of all DNNS is finished, the accelerators become idle until the latency constraint is
reached. Control-based manager resembles NeuOS [11], which employs LAG analysis to tune fre-
quency under fixed scheduling for all latency constraints. This fixed scheduling configuration is
chosen to use 1 GPU and 1 DLA in a load-balanced way under the highest frequency since this
setup shows the maximal achievable latency range when adjusting frequency. For Learn&Control
schemes, we choose to transport CALOREE [45], which learns suitable configuration candidates
offline and uses feedback control online to select among them. We integrate the learner and se-
lector in A% as the CALOREE manager. Also, we compare two variants of A% During the cherry-
picking stage in Section 4.2.1, A%2_power(A?_mem) simply chooses a configuration with minimal
power(memory) regardless of memory(power) usage. They are used to examine “what if the trade-
off is completely ignored”. A purely Learning-based scheme is not compared since it is doomed to
have poor real-time performance.

6 Evaluation Results
6.1 Overall Effectiveness

We evaluate five important effectiveness indicators: average power consumption (Power) and mem-
ory usage (Memory) for efficiency; deadline violation rate (ddl_vio_rate) and 99th-percentile (P99)
of absolute deadline violation extent (ddl_vio_extent) for timeliness.

Figure 11 shows the power and memory optimization. In both 12 and 16 DNN setups, power
consumption and memory usage of A> and CALOREE are both roughly the lowest among the four
main baselines. Compared to NeuOS, the power consumption of A? is 32.8% less, and the mem-
ory footprint is 13.8% smaller on average. The large memory usage in the “loose” setup and high
power consumption of NeuOS is caused by its inability to adjust DNN mapping dynamically. The
other baseline method, Race-to-idle, never exceeds latency constraint but performs poorly in terms
of both power and memory. Thus, we argue that blindly using GPU with mid/loose latency con-
straint as Race-to-idle does wastes power and memory. Although CALOREE achieves comparable
performance and efficiency with A%, we show that it falls behind in the timeliness guarantee.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:15
| ma2 I CALOREE ENeuOS  MRace-to-idle |

@015 730 0015 =30

© o © o

;I 0.1 ';lgzo =01 .;lézo

2 P~ ° P

1005 3810 >0.05 BL1w0

ke S 3 3

S 0 0 T 0 0

tight mid loose tight  mid  loose tight mid loose tight  mid  loose

(a) 12 DNNs setup

(b) 16 DNNs setup

Fig. 12. A comparison of deadline violation rate and extent. (Lower is better.) The configurations used are the
same as Figure 11. Although Race-to-idle has almost no violation, it behaves poorly in efficiency optimization.

Figure 12 shows the timeliness guarantee comparison. With specialized tweaker, A? violates
deadline less than 5% in most setups (3.6% on average), and the p99 value of deadline violation
extent is almost always less than 5 ms. As for comparison, the deadline violation rate of CALOREE
can be up to 15%, and the violation p99 value can be 10-25 ms higher than latency constraints.
This implies that vanilla Learn&Control methods are ineffective under spikes and rapid changes.
The deadline violation rate of NeuOS in the “tight” range is high due to its inability to enable more
accelerators. This shows that merely tuning frequency leads to reduced schedulability.

Finally, both A?_power and A%2_mem perform well on one aspect, sacrificing the other. The mem-
ory usage of A?_power is the second largest among all evaluated schemes in the 12 DNN setup,
while the power consumption of A?_mem is the highest one in 16 DNN setups. Some may no-
tice that the power consumption of A?_power is sometimes slightly higher than A% The reason
is that bars shown in Figure 11 are averaged values under several adjacent latency constraints. In
summary, completely ignoring trade-offs brings very skewed results.

6.2 Case Study

We further conduct a case study to demonstrate the effectiveness of A? under a more realistic
runtime condition setup. As mentioned in Section 4, A% can handle run-time dynamicity in various
executing scenarios. For example, an AMS may execute tasks in an aperiodic or irregular manner
for environment adaptation or human interaction. We assume that all such unpredictable tasks are
executed on the CPU or hardware accelerators aside from the GPU and NPUs (or DLAs on Jetson).
These co-running workloads bring run-time performance interference to the fixed set of DNNs,
which is addressed by A%. The capability of adapting to unpredictable DNNs for AMS perception
is left for future work. In this case study, we select several popular real-world co-running
workloads used in AMS and deploy them together with the A%-managed DNNs. We show that A?
can adapt well under the unpredictable performance interference by these irregular co-running
tasks.

We select the following three co-running workloads popular in AMS. NDT localization (NDT) [5]
performs high-resolution localization using point-cloud maps. It is multi-threaded and executes
on the CPU. Dense Optical Flow (DOF) [7] detects fast-moving objects leveraging the frame
difference of image sequences. It executes on a specialized accelerator named PVA (Programmable
Vision Accelerator) on Jetson. Temporal Noise Reduction (TNR) [8] performs denoising on high-
resolution video. It executes on a specialized accelerator named VIC (Video Image Compositor)
on Jetson. All of them are heavy-weight tasks introducing non-negligible performance degradation
to the DNNs. We execute them using the sample input data fragment provided by their respective
developers. Their execution time is 126, 45, and 8 s, respectively. To maintain reproducibility while
creating an irregular co-running combination, we deploy the three tasks periodically but at distinct
periods of 200, 80, and 30 s in a total evaluation duration of 400 s. Note that A? does not assume
the periodicity of the co-running tasks and handles them as black boxes. We follow the 12 DNN

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



86:16 L. Sun et al.

Power (watt)

SNWAOO N
-".

G

,:z“,f(

N W B

S8 8 8
Power (watt)
SNWAOO N

Power (watt)
SherNON®

=}

CALOREE @ NeuOS
M Race-to-idle OA2_power_only @A2_mem_only

"\4\‘\
A . o
2 - 30 ki’ ovimce

ol B |
0(';5 100" 200 300 400" 500 ° 100 200 300 400 500 100 200 300 400 500
b 1 Latency(ms) Latency(ms) Latency(ms)
0-03 (a) iter=pop=50 (b) iter=pop=80 (c) iter=pop=100

[ mA2 mCALOREE mNeuOS mRace-to-idle |

‘IAZ

extent (m:

ddl_vio

ddl_vio_rate

=N
o o o

Fig. 13. Case study results with OMC from Fig. 14. Pareto boundaries in power-performance space. The
real-world non-predictable workloads. color bar denotes the iteration number.

setup. To thoroughly test the adaptation capability of A2, we also vary the latency constraint of
the DNNs in the meantime. The latency constraint is set to 150 ms initially and increases by 50 ms
every 100 s. All other evaluation setups are the same as Section 2.2.

The evaluation results are shown in Figure 13. We measure the same effectiveness indicators as
Section 6.1. The power consumption and memory space usage of A% are both the lowest compared
to the baselines. The deadline violation rate of A% is merely 2.2%, and the p99 value of deadline vio-
lation extent is less than 10 ms. This proves the effectiveness of A% under a more realistic runtime
condition setup with irregular co-running tasks.

6.3 Detailed Analysis

6.3.1 Sensitivity of Learning Hyper-parameters. We customized a GA, NSGA-II, to find the 3D
Pareto boundary in Section 4.2.1. The hyper-parameters used especially iterations (iter) and pop-
ulation size (pop), are important for fast and sufficient configuration space exploration. Figure 14
shows the projection of every explored configuration onto power-performance space under three
different hyper-parameter settings. Bluish points are explored in early iterations, while reddish
ones are explored later. Configurations lying on the 2D Pareto boundary are colored black.

Under all three setups, the GA produces a Pareto boundary with a similar good shape. This
implies the learner is not sensitive to the two hyper-parameters. We choose 80 in all experiments
since it yields slightly better results, balancing between exploration sufficiency and execution time.
For an A? user, we recommend first selecting “pop” to any value between 50-100 and then incre-
mentally increasing “iter” without restart. Plotting exploration status can help in deciding when
to stop based on the quality of the current results.

6.3.2  Sensitivity of Conservative Factor. In Section 4.3.2, we introduced a linearly decaying “con-
servative factor” to make conservative decisions during the early execution. In this part, we inves-
tigate the influence of its initial value. A large initial value may lead to high power usage, while
a small one can result in deadline violation. In Figure 15, we set the initial value to 1/1.2/1.5 and
plot the deadline violation rate and p99 of absolute deadline violation in 12 DNNs setup.

Not incorporating a “conservative factor” (setting to 1) leads to large deadline violation rates,
which go up to 17% in the mid case. Increasing it to 1.2 reduces the deadline violation rate greatly
with negligible increase in power consumption. Further increasing it to 1.5 yields better p99 vi-
olation but raises power consumption slightly by 0.2 watts. Therefore, the conservative factor is
important, and setting it to 1.2-1.5 would be good enough depending on the expected deadline
satisfaction requirement. We choose 1.2 in all experiments.

6.3.3 Zoomed-in Analysis on Tweaking Effect. We show the effectiveness of A? by presenting
detailed latency curves under tight and loose latency constraints in Figure 16 (mid constraints are
shown in Figure 6). The experiment setup is the same as 3.3.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:17

80 170 Outer contention increased Config switched
© E 50 ! Tight (150)
[ 6= E
| S < 150 P - 4 )
o = >
2 4 X o 140
[} =
! o & 130
3 22 8 5
0 _El é 310 Loose(300)
1.2 15 ° 3 a0 - SN A _
Initial Value of the Conservative Factor 2 a0 W%uﬂﬂ%g‘junuuugnnuguﬂnuﬂﬂﬂn
[ Deadline violation rate mmmtight ®==mid Cloose ‘ w 280
l Abs deadline violation P99 -®@-tight ~ -&-mid -m-loose ‘ -o-Learn & Control -O-Analyze & Adapt
Fig. 15. Real-time performance comparison of Fig. 16. Latency curves under 150 and 300 ms
different conservative factors. constraints.

A? does not suffer from severe deadline violation in all three cases. The deadline violation extent
in loose case may seem to be more severe (20 ms) than in tight case (10 ms), but the violation extent
in percentage are similar at ~7% (also for Figure 6). The latency curve of A? does not show spikes
when a configuration switch is triggered. During a configuration switch, new engines are first
loaded by the CPU, and useless engines are flushed. This could cause extra memory bandwidth.
However, the online tweaking scheme deals with such extra contention as well as handling the
two transient spikes before outer contention increases.

6.3.4 Overhead Analysis. The online tweaker must be lightweight. In our implementation, each
decision-making process takes <1 ms, which is small compared to the typical DNN execution time
of 20-50 ms. The decision-making logic executes asynchronously with DNN workloads and is
not on the critical path. The overhead of the online selector and tweaker on CPU utilization is
also negligible. The execution time of the GA ranges between 1-8 hours, depending on hyper-
parameter selection, and characterization table profiling takes about 1-2 hours.

7 Conclusions

Emerging AMS raise new challenges for achieving ALP to optimize system efficiency and guar-
antee management timeliness. In this work, we propose A%, a well-crafted resource manager cov-
ering both workload analysis and real-time adaption. It achieves 32.8% improvements in power
and 13.8% in memory compared with control-based methods. It also reduces the deadline viola-
tion rate by 9.2 percentage points on average compared to directly porting Learn&Control meth-
ods. We expect that our design will have a transformative impact on AMS with heterogeneous Al
accelerators.

Acknowledgments

We sincerely thank all the anonymous reviewers for their valuable comments. The corresponding
author is Chao Li.

References

[1] 2019. NVIDIA Tegra Xavier. Retrieved from https://en.wikichip.org/wiki/nvidia/tegra/xavier

[2] 2022. Retrieved from https://www.nvidia.cn/self-driving-cars/drive-platform/hardware/

[3] 2022. Stress-ng Test Tool. Retrieved from https://github.com/ColinlanKing/stress-ng/tree/a71aad422b1b9349
81d10e7b3be866b2744119¢7

[4] 2023. Europe’s 6-wheeled Delivery Robots Begin Invasion of US Campuses. Retrieved from https://sifted.eu/articles/
starship-robot-delivery/

[5] 2023. NDT Localization. Retrieved from https://github.com/koide3/hdl localization

[6] 2024. Mobileye EyeQ. Retrieved from https://www.mobileye.com/technology/eyeq-chip/

[7] 2024. VPI Dense Optical Flow. Retrieved from https://docs.nvidia.com/vpi/sample_optflow_dense. html

[8] 2024. VPI Temporal Noise Reduction. Retrieved from https://docs.nvidia.com/vpi/sample_tnr.html

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.


https://en.wikichip.org/wiki/nvidia/tegra/xavier
https://www.nvidia.cn/self-driving-cars/drive-platform/hardware/
https://github.com/ColinIanKing/stress-ng/tree/a71aad422b1b934981d10e7b3be866b2744f19c7
https://sifted.eu/articles/starship-robot-delivery/
https://github.com/koide3/hdl_localization
https://www.mobileye.com/technology/eyeq-chip/
https://docs.nvidia.com/vpi/sample_optflow_dense.html
https://docs.nvidia.com/vpi/sample_tnr.html

86:18 L. Sun et al.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

Aporva Amarnath, Subhankar Pal, Hiwot Kassa, Augusto Vega, Alper Buyuktosunoglu, Hubertus Franke, John-David
Wellman, Ronald Dreslinski, and Pradip Bose. 2022. HetSched: Quality-of-mission aware scheduling for autonomous
vehicle SoCs. arXiv:2203.13396. Retrieved from https://arxiv.org/abs/2203.13396

Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast pipelined context switching for deep learn-
ing applications. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation.
499-514.

Soroush Bateni and Cong Liu. 2020. NeuOS: A latency-predictable multi-dimensional optimization framework for
DNN-driven autonomous systems. In Proceedings of the 2020 USENIX Annual Technical Conference. 371-385.

Soroush Bateni, Zhendong Wang, Yuankun Zhu, Yang Hu, and Cong Liu. 2020. Co-optimizing performance and
memory footprint via integrated CPU/GPU memory management, an implementation on autonomous driving
platform. In Proceedings of the 2020 IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE,
310-323.

Soroush Bateni, Husheng Zhou, Yuankun Zhu, and Cong Liu. 2018. Predjoule: A timing-predictable energy opti-
mization framework for deep neural networks. In Proceedings of the 2018 IEEE Real-Time Systems Symposium. IEEE,
107-118.

Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra Faust, and Vijay Reddi. 2018.
Mavbench: Micro aerial vehicle benchmarking. In Proceedings of the 2018 51st annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 894-907.

Shuo Cheng, Liang Li, Xiang Chen, Jian Wu, and Hong-da Wang. 2020. Model-predictive-control-based path tracking
controller of autonomous vehicle considering parametric uncertainties and velocity-varying. IEEE Transactions on
Industrial Electronics 68, 9 (2020), 8698-8707.

Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E. Belviranli. 2022. AxoNN: Energy-aware exe-
cution of neural network inference on multi-accelerator heterogeneous SoCs. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 1069-1074.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182-197.

Kalyanmoy Deb, Udaya Bhaskara Rao N, and Sindhya Karthik. 2007. Dynamic multi-objective optimization and
decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In Proceedings of the
International Conference on Evolutionary Multi-criterion Optimization. Springer, 803-817.

Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and multi-phase learning for computer systems opti-
mization. In Proceedings of the 46th International Symposium on Computer Architecture. 39-52.

Bryan Donyanavard, Tiago Miick, Amir M. Rahmani, Nikil Dutt, Armin Sadighi, Florian Maurer, and Andreas Herk-
ersdorf. 2019. Sosa: Self-optimizing learning with self-adaptive control for hierarchical system-on-chip management.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 685-698.

Sandeep D’souza and Ragunathan Rajkumar. 2018. CycleTandem: Energy-saving scheduling for real-time systems
with hardware accelerators. In Proceedings of the 2018 IEEE Real-Time Systems Symposium. IEEE, 94-106.

Anne Farrell and Henry Hoffmann. 2016. MEANTIME: Achieving both minimal energy and timeliness with approxi-
mate computing. In Proceedings of the 2016 USENIX Annual Technical Conference. 421-435.

David E. Goldberg and Robert Lingle. 1985. Alleles, loci, and the traveling salesman problem. In Proceedings of an
International Conference on Genetic Algorithms and Their Applications, Vol. 154. Lawrence Erlbaum Hillsdale, NJ,
154-159.

Adam W Harley, Zhaoyuan Fang, Jie Li, Rares Ambrus, and Katerina Fragkiadaki. 2023. Simple-bev: What really
matters for multi-sensor bev perception? In Proceedings of the 2023 IEEE International Conference on Robotics and
Automation. IEEE, 2759-2765.

Seonyeong Heo, Sungjun Cho, Youngsok Kim, and Hanjun Kim. 2020. Real-time object detection system with multi-
path neural networks. In Proceedings of the 2020 IEEE Real-Time and Embedded Technology and Applications Symposium.
IEEE, 174-187.

Mark D. Hill and Vijay Janapa Reddi. 2021. Accelerator-level parallelism. Communications of the ACM 64, 12 (2021),
36-38.

Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong Du. 2022. Bevdet: High-performance multi-camera 3d
object detection in bird-eye-view. arXiv:2112.11790. Retrieved from https://arxiv.org/abs/2112.11790

Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann. 2015. POET: A portable approach to minimiz-
ing energy under soft real-time constraints. In Proceedings of the 21st IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 75-86.

Wonseok Jang, Hansaem Jeong, Kyungtae Kang, Nikil Dutt, and Jong-Chan Kim. 2020. R-TOD: Real-time object de-
tector with minimized end-to-end delay for autonomous driving. In Proceedings of the 2020 IEEE Real-Time Systems
Symposium. IEEE, 191-204.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.


https://arxiv.org/abs/2203.13396
https://arxiv.org/abs/2112.11790

A% Towards Accelerator Level Parallelism for Autonomous Micromobility Systems 86:19

[30] Mingoo Ji, Saehanseul Yi, Changjin Koo, Sol Ahn, Dongjoo Seo, Nikil Dutt, and Jong-Chan Kim. 2022. Demand lay-
ering for real-time DNN inference with minimized memory usage. In Proceedings of the 2022 IEEE Real-Time Systems
Symposium. IEEE, 291-304.

Woosung Kang, Kilho Lee, Jinkyu Lee, Insik Shin, and Hoon Sung Chwa. 2021. Lalarand: Flexible layer-by-layer

CPU/GPU scheduling for real-time dnn tasks. In Proceedings of the 2021 IEEE Real-Time Systems Symposium. IEEE,

329-341.

Sheng-Chun Kao and Tushar Krishna. 2022. MAGMA: An optimization framework for mapping multiple DNNs on

multiple accelerator cores. In Proceedings of the 2022 IEEE International Symposium on High-Performance Computer

Architecture. IEEE, 814-830.

David HK Kim, Connor Imes, and Henry Hoffmann. 2015. Racing and pacing to idle: Theoretical and empirical anal-

ysis of energy optimization heuristics. In Proceedings of the 2015 IEEE 3rd International Conference on Cyber-physical

Systems, Networks, and Applications. IEEE, 78-85.

Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra Faust, Sabrina Neuman, Gu-Yeon

Wei, David Brooks, and Vijay Janapa Reddi. 2022. Automatic domain-specific SoC design for autonomous unmanned

aerial vehicles. In Proceedings of the 2022 55th IEEE/ACM International Symposium on Microarchitecture. IEEE, 300-317.

[35] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen and Vikas Chandra. 2020. Heteroge-

neous dataflow accelerators for Multi-DNN Workloads. arXiv:1909.07437. Retrieved from https://arxiv.org/abs/1909.

07437

Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen, and Vikas Chandra. 2021. Hetero-

geneous dataflow accelerators for multi-DNN workloads. In Proceedings of the 2021 IEEE International Symposium on

High-Performance Computer Architecture. IEEE, 71-83.

[37] Yen-Lin Lee, Pei-Kuei Tsung, and Max Wu. 2018. Techology trend of edge Al In Proceedings of the 2018 International

Symposium on VLSI Design, Automation and Test. IEEE, 1-2.

Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia, Zhiwei Lin, YongtaoWang, Tao Tang, BingWang, and Zhi

Tang. 2022. Bevfusion: A simple and robust lidar-camera fusion framework. In Advances in Neural Information Pro-

cessing Systems 35: Annual Conference on Neural Information Processing Systems. 10421-10434.

[39] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason Mars. 2018. The

architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of the 23rd International

Conference on Architectural Support for Programming Languages and Operating Systems. 751-766.

Liangkai Liu, Zheng Dong, Yanzhi Wang, and Weisong Shi. 2022. Prophet: Realizing a predictable real-time perception

pipeline for autonomous vehicles. In Proceedings of the 2022 IEEE Real-Time Systems Symposium. IEEE, 305-317.

Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. 2017. Computer architectures for autonomous driving.

Computer 50, 8 (2017), 18-25.

[42] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song Han. 2023. Bevfusion:

Multi-task multi-sensor fusion with unified bird’s-eye view representation. In Proceedings of the 2023 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2774-2781.

Raju Machupalli, Masum Hossain, and Mrinal Mandal. 2022. Review of ASIC accelerators for deep neural network.

Microprocessors and Microsystems 89, 1 (2022), 104441.

[44] Pablo Antonio Martinez, Gregorio Bernabé, and Jose Manuel Garcia. 2022. POAS: A high-performance scheduling

framework for exploiting accelerator level parallelism. arXiv:2209.10245. Retrieved from https://arxiv.org/abs/2209.

10245

Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann. 2018. Caloree: Learning control for predictable

latency and low energy. ACM SIGPLAN Notices 53, 2 (2018), 184-198.

[46] Mohammad Alaul Haque Monil, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Allen D. Malony. 2020.
MEPHESTO: Modeling energy-performance in heterogeneous SoCs and their trade-offs. In Proceedings of the ACM
International Conference on Parallel Architectures and Compilation Techniques. 413-425.

[47] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. 2016. Accelerat-
ing binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. In Proceedings of the 2016 International
Conference on Field-Programmable Technology. IEEE, 77-84.

[48] Jonah Philion and Sanja Fidler. 2020. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly

unprojecting to 3d. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August

23-28, 2020, Proceedings, Part XIV 16. Springer, 194-210.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. 2021. Multi-modal fusion transformer for end-to-end au-

tonomous driving. In Proceedings of the I[EEE/CVF Conference on Computer Vision and Pattern Recognition. 7077-7087.

Yugqiong Qi, Yang Hu, Haibin Wu, Shen Li, Haiyu Mao, Xiaochun Ye, Dongrui Fan, and Ninghui Sun. 2021. Tackling

variabilities in autonomous driving. arXiv:2104.10415. Retrieved from https://arxiv.org/abs/2104.10415

[31

[

(32

—

—
w
w

=

[34

[l

(36

—

(38

=

[40

—

(41

—

(43

=

[45

—

[49

—

(50

=

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.


https://arxiv.org/abs/1909.07437
https://arxiv.org/abs/2209.10245
https://arxiv.org/abs/2104.10415

86:20 L. Sun et al.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

William M Spears and Kenneth A De Jong. 1991. An analysis of multi-point crossover. In Proceedings of the Foundations
of Genetic Algorithms. Vol. 1. Elsevier, 301-315.

Ton Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke, and C. Greg Plaxton. 1996. A
proportional share resource allocation algorithm for real-time, time-shared systems. In Proceedings of the 17th IEEE
Real-Time Systems Symposium. IEEE, 288-299.

Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire, and Shan Lu. 2020. ALERT:
Accurate learning for energy and timeliness. In Proceedings of the 2020 USENIX Annual Technical Conference. 353-369.
Yidi Wang, Mohsen Karimi, Yecheng Xiang, and Hyoseung Kim. 2021. Balancing energy efficiency and real-time
performance in GPU scheduling. In Proceedings of the 2021 IEEE Real-Time Systems Symposium. IEEE, 110-122.
Yecheng Xiang and Hyoseung Kim. 2019. Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time in-
ference. In Proceedings of the 2019 IEEE Real-Time Systems Symposium. IEEE, 392-405.

Cheng Xu, Xiaofeng Hou, Jiacheng Liu, Chao Li, Tianhao Huang, Xiaozhi Zhu, Mo Niu, Lingyu Sun, Peng Tang,
Tonggiao Xu, K.-T. Tim Cheng, and Minyi Guo. 2023. MMBench: Benchmarking end-to-end multi-modal DNNs and
understanding their hardware-software implications. In Proceedings of the 2023 IEEE International Symposium on Work-
load Characterization. IEEE, 154-166.

Yuanchao Xu, Mehmet Esat Belviranli, Xipeng Shen, and Jeffrey Vetter. 2021. PCCS: Processor-centric contention-
aware slowdown model for heterogeneous system-on-chips. In Proceedings of the MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 1282-1295.

Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F. Donelson Smith, James H. Anderson, and Jan-Michael Frahm.
2019. Re-thinking CNN frameworks for time-sensitive autonomous-driving applications: Addressing an industrial
challenge. In Proceedings of the 2019 IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE,
305-317.

Khalid Yousif, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. 2015. An overview to visual odometry and visual
SLAM: Applications to mobile robotics. Intelligent Industrial Systems 1, 4 (2015), 289-311.

Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. 2020. Building the computing system for au-
tonomous micromobility vehicles: Design constraints and architectural optimizations. In Proceedings of the 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 1067-1081.

Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou, and Jishen Zhao. 2020. Driving
scenario perception-aware computing system design in autonomous vehicles. In Proceedings of the 2020 IEEE 38th
International Conference on Computer Design. IEEE, 88-95.

Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou, and Jishen Zhao. 2020. Safety score:
A quantitative approach to guiding safety-aware autonomous vehicle computing system design. In Proceedings of the
2020 IEEE Intelligent Vehicles Symposium. IEEE, 1479-1485.

Liang Zhou, Laxmi N Bhuyan, and KK Ramakrishnan. 2020. Gemini: Learning to manage CPU power for latency-
critical search engines. In Proceedings of the 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 637-349.

Received 7 February 2024; revised 24 June 2024; accepted 25 July 2024

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 86. Publication date: November 2024.



