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The Emerging Microservice Architecture

Microservice disaggregates a monolithic application into many tiny services,

each of whom can be managed and tested independently.
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The Revolution of Cloud Services

Microservices empower organizations to build and run scalable, agile, and

resilient applications in dynamic environments.
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Industrial Applications of Microservices

Many IT companies such as Alibaba and Amazon are actively embracing this

new software development paradigm.
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Prior Work on Microservices

Prior work: microservice design and optimization.

» Microservice-scale power management

[SC’20, HPCA’19] Power Magagement

» QoS-aware performance optimization

[IPDPS,21, SOCC,21] Perf. Opgmlzatlon

» Designing microservice applications
Microservice Arch.

[ICSE’18, ASPLOS’19] o
» Service-oriented architecture

Software Arch.
[AWS, Google, Microsoft, etc.] Q

» Fine-grained software design

. Granular Design
— O .

[Container, Lambda, etc.]

We enhance the QoS-aware performance optimization for microservices.

» Fully exploiting the unique characteristics of microservices.



Different Level of Parallelisms

Parallelism has been exploited at various levels of the system design for

better performance and efficiency.

Ol
> Instruction Level Parallelism (ILP) £ g‘ A
=
Multiple instructions can be executed concurrently. A|IO|E
» Thread Level Parallelism (TLP) ® [E ? g
E
Multiple threads can be executed concurrently. i 8 % 8
> Request Level Parallelism (RLP) L (@] |[] ) | (] (@)
o [A[A[D] [A]|T]Al
Multiple requests can be executed concurrently. o OfA Ol|A]=
| A ][] ) e | (@) {
» Data Level Parallelism (DLP) 2AAAAARARA
. JEL Ll L L 1 X L X,
Instructions operate concurrently on several data. FlI00000O0000

» Other emerging parallelisms...

There are new types of parallelisms with new architectures and applications.
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Impact of Application Heterogeneity
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Some microservices are
highly variable due to

application heterogeneity.

/

The application heterogeneity will cause the variation of microservice

execution time under various user invocations.

> It is often caused by the actual execution logic of the microservice program.

» Different microservice exhibits various degree of application heterogeneity.
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Impact of Resource Provisioning
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The performance implication of microservice resource relationship is complex.
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Impact of Communication Overhead
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Stochastic noises in the microservice environment add up the complexity of
scheduling of normal system operations.
» Here we focus on the variation of communication overhead between microservices.

» Communication time variations on single machine are more stable than across machines.
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Summary of Design Challenges

Due to Application Heterogeneity

and Resource Provisioning.
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Stochastic noises complicates

system management.

The crux of the problem is two-fold:
> We need to know how different microservices should be coalesced.

» We must ensure fairly accurate alignment throughout the process.
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Potential of Microservice Level Parallelism

Seneeliig Chip Level System Level
Level

. : Instruction : : Monolithic
Granularity Instruction Microservice o

Stream Application

Key Opti. : :

Approach Temporal Spatial Temporal Spatial
AN | [

Microscopic Critical Void Macroscopic

instruction scheduling request scheduling

MLP is critical and necessary:
» MLP is orthogonal to existing parallelism model.
» MLP focuses on microservice chain scheduling.

» MLP considers interrelationship and uncertainty of microservices.



Core Metric: Volatility of Requests

Based on characterization, microservices exhibit volatile behaviors.

» We define volatility of request (V,.), indicating the likelihood of the request

to deviate from its ideal execution conditions.

I 1(low) — 3(high) Inner logic variability

n
V,= «a leixsixci/n
=1 S 1(low) — 3(high) Sensitivity to resource

C |[1-3 with Var(RTT) Communication overhead

Understanding volatility helps make prudent decisions.
» Low volatility implies the start time of microservices is more predictable and less volatile.

» High volatility implies the start time of microservices is less predictable and more volatile.
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Volatility-aware Microservice Level Parallelism

v-MLP
Interface
Layer

Server Driver CPU [Mem] [ 10 ] [ Disk] [Others]

» V-MLP acts as the interface layer between the request handler and the server driver.

» Vv-MLP aims at the efficient resource management for microservices in datacenters.
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Volatility-aware Microservice Level Parallelism

Reduest Handler D

Request Schedule Uncertain
Information Decisions Disturbances
v-MLP S Self-organizing L |deal Execution State —> Self-healing
Interface Modul Module
Layer [——> odule < Real-time Adjustment —
I
Resource Resource
Demand Allocation
Server Driver CPU [ Mem ] [ 10 ] [ Disk ] [ Others ]

» Self-organizing module considers request information to coalesce microservices.

» Self-healing module handles uncertain disturbances during executions.
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Design Principles of Self-organizing Module

» Periodically refreshes the status of machines in the scheduling cluster by:

» Future remaining resource status

> Future microservice execution status

» Periodically reorder the request waiting queue by:
» Volatility of the request
» Arrival time of the request
» Shortest execution time of the microservices
>

SLA level of the request

» Assign the microservices to machines with enough resource by volatility:

» Satisfy resource demand within 18t percentile of latency for low volatility.
> Satisfy resource demand within 50" percentile of latency for mid volatility.

> Satisfy resource demand within 99t percentile of latency for high volatility.
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Design Principles of Self-healing Module

» Self-healing module handles uncertain disturbances in real-time execution

based on the ideal microservice pipeline produced by self-organizing module.

» Delay Slot Mechanism:

» Working with waiting independent microservices (nonempty delay slot).

» Advance the execution of independent microservices to fill the resource vacancy.

> Resource Stretch Mechanism:

» Working with no waiting independent microservice (empty delay slot).

» Adjust the resource usage of executing microservices to fill the resource vacancy.
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Experiment Methodology

» Experiment Platform

Cluster 4 worker nodes (total 24 cores) + 1 manager node
Server Dell R730, Intel® Xeon® E5-2620
Memory 32GB, DDR4 for each node
Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3
| simulation Platform Configurations |
Server Dell R740 Intel® Xeon® Gold 5218
Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3

» Experiment Benchmarks

Microservice Apps - S

» DeathStarBench [Cornell] e= e
» TrainTicket [Fudan]
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Experiment Methodology

> Evaluated workloads

Compose-post in SN

High V; ;
getCheapestin TT

Mid V. basicSearch in TT
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Low V. .
Read-user-timeline in SN

» Existing scheduling schemes

Simple FairSched FCFS, Allocate equal resource
Scheduler | CurSched FCFS, Allocate by current load
Advanced PartProfile Priority, Allocate by performance profile
Scheduler | FullProfile Priority, Allocate by overall profile

MLP scheme v-MLP Our Proposal
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Evaluation Results: Effectiveness & Efficiency
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Evaluation Results: Performance
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Conclusions

» Insights

> Microservice characteristics

» Potential of new parallelism

> Microservice Level Parallelism

» Interface layer between upper and lower
» Coordinate various microservice chains

» Tackle the uncertainty in dynamic cloud
» Help for next-generation cloud-native design.
» We will expand MLP towards more directions in future.
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