
Exploring Efficient Microservice Level Parallelism

▪ Xinkai Wang, Chao Li, Lu Zhang, Xiaofeng Hou, Quan Chen, Minyi Guo

▪ Department of Computer Science and Engineering

May 2022



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



6

The Emerging Microservice Architecture

Microservice disaggregates a monolithic application into many tiny services, 

each of whom can be managed and tested independently.

Monolithic Architecture Microservice-based Architecture



7

The Revolution of Cloud Services

Microservices empower organizations to build and run scalable, agile, and 

resilient applications in dynamic environments.



8

Industrial Applications of Microservices

Many IT companies such as Alibaba and Amazon are actively embracing this 

new software development paradigm.

Alibaba Commercial Applications

Amazon DynamoDB Built 

with Microservices



9

Prior work: microservice design and optimization.

➢ Microservice-scale power management

[SC’20, HPCA’19]

➢ QoS-aware performance optimization

[IPDPS’21, SoCC’21]

➢ Designing microservice applications

[ICSE’18, ASPLOS’19]

➢ Service-oriented architecture

[AWS, Google, Microsoft, etc.]

➢ Fine-grained software design

[Container, Lambda, etc.]

We enhance the QoS-aware performance optimization for microservices.

➢ Fully exploiting the unique characteristics of microservices.

Prior Work on Microservices

Power Management

Granular Design

Software Arch.

Microservice Arch.

Perf. Optimization



10

Parallelism has been exploited at various levels of the system design for 

better performance and efficiency.

➢ Instruction Level Parallelism (ILP)

Multiple instructions can be executed concurrently.

➢ Thread Level Parallelism (TLP)

Multiple threads can be executed concurrently.

➢ Request Level Parallelism (RLP)

Multiple requests can be executed concurrently.

➢ Data Level Parallelism (DLP)

Instructions operate concurrently on several data.

➢ Other emerging parallelisms…

There are new types of parallelisms with new architectures and applications.

Different Level of Parallelisms



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



12

Impact of Application Heterogeneity

The application heterogeneity will cause the variation of microservice 

execution time under various user invocations. 

➢ It is often caused by the actual execution logic of the microservice program.

➢ Different microservice exhibits various degree of application heterogeneity.

Some microservices are 

highly variable due to 

application heterogeneity.



13

Impact of Resource Provisioning

Obs.1: Microservices have 

unique resource requirements 

and can be collocated.

Obs.2: The resource demand 

may not be always met under 

highly dynamic outer traffic.

Obs.3:Microservices are 

differently sensitive to 

resource shortage from the 

perspective of performance.

The performance implication of microservice resource relationship is complex.



14

Impact of Communication Overhead

Some microservices show 

highly uncertain 

communication overhead.

Stochastic noises in the microservice environment add up the complexity of 

scheduling of normal system operations.

➢ Here we focus on the variation of communication overhead between microservices.

➢ Communication time variations on single machine are more stable than across machines.



15

Summary of Design Challenges

Two Request DAGs

41

3

2

5

6

7

A B

1 3 2 4

𝑡1 𝑡2

1 3 2 4

𝑡1 𝑡2
Ideal Execution

5 6 7

5 6 7

The end time of 

caller microservice

1. Inner execution logic

2. Outer resource budget

3. The communication

overhead

The start time of 

callee microservice

The crux of the problem is two-fold:

➢ We need to know how different microservices should be coalesced.

➢ We must ensure fairly accurate alignment throughout the process.

Due to Application Heterogeneity 

and Resource Provisioning.

Stochastic noises complicates 

system management.

Tightly combined with 

aligned and ideal 

execution without contention.



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



17

Potential of Microservice Level Parallelism

Parallelism ILP TLP MLP RLP

Scheduling 

Level
Chip Level System Level

Granularity Instruction
Instruction 

Stream
Microservice

Monolithic 

Application

Key Opti.

Approach
Temporal Spatial Temporal Spatial

MLP is critical and necessary:

➢ MLP is orthogonal to existing parallelism model.

➢ MLP focuses on microservice chain scheduling.

➢ MLP considers interrelationship and uncertainty of microservices.

Microscopic 

instruction scheduling

Macroscopic 

request scheduling
Critical Void



18

Core Metric: Volatility of Requests

Based on characterization, microservices exhibit volatile behaviors.

➢ We define volatility of request (𝑽𝒓), indicating the likelihood of the request 

to deviate from its ideal execution conditions.

𝑽𝒓 = 𝜶 ×෍

𝒊=𝟏

𝒏

𝑰𝒊 × 𝑺𝒊 × 𝑪𝒊/𝒏

Abbr. Value Range Descriptions

I 1(low) – 3(high) Inner logic variability

S 1(low) – 3(high) Sensitivity to resource

C 1-3 with Var(RTT) Communication overhead

Understanding volatility helps make prudent decisions.

➢ Low volatility implies the start time of microservices is more predictable and less volatile.

➢ High volatility implies the start time of microservices is less predictable and more volatile.



19

Volatility-aware Microservice Level Parallelism

➢ v-MLP acts as the interface layer between the request handler and the server driver.

➢ v-MLP aims at the efficient resource management for microservices in datacenters.

Server Driver CPU Mem IO

Request Handler Request1 ···Request2

Others

Request3

Disk

v-MLP

Interface 

Layer



20

Volatility-aware Microservice Level Parallelism

Resource

Allocation

Server Driver CPU Mem IO

Request Handler Request1 ···

Self-organizing 

Module

Self-healing 

Module

Resource

Demand

Schedule

Decisions

Request2

Request

Information

Uncertain 

Disturbances

Others

Request3

Disk

➢ Self-organizing module considers request information to coalesce microservices.

➢ Self-healing module handles uncertain disturbances during executions.

Ideal Execution State

Real-time Adjustment

v-MLP

Interface 

Layer



21

Design Principles of Self-organizing Module

➢ Periodically refreshes the status of machines in the scheduling cluster by:

➢ Future remaining resource status 

➢ Future microservice execution status

➢ Periodically reorder the request waiting queue by:

➢ Volatility of the request

➢ Arrival time of the request

➢ Shortest execution time of the microservices

➢ SLA level of the request

➢ Assign the microservices to machines with enough resource by volatility:

➢ Satisfy resource demand within 1st percentile of latency for low volatility.

➢ Satisfy resource demand within 50th percentile of latency for mid volatility.

➢ Satisfy resource demand within 99th percentile of latency for high volatility.



23

Design Principles of Self-healing Module

A B Delay Slot

1 3

Late Invoke𝑡1 𝑡2

Ideal Microservice Pipeline

5 Empty Delay Slot

1 3

7
Resource Stretch

6

Alloc. res. of μService 3

6

1 3 2 4

···

5 6 7
6 7

Executing

μService

2 4

➢ Self-healing module handles uncertain disturbances in real-time execution 

based on the ideal microservice pipeline produced by self-organizing module.

➢ Delay Slot Mechanism:

➢ Working with waiting independent microservices (nonempty delay slot).

➢ Advance the execution of independent microservices to fill the resource vacancy.

➢ Resource Stretch Mechanism:

➢ Working with no waiting independent microservice (empty delay slot).

➢ Adjust the resource usage of executing microservices to fill the resource vacancy.



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



26

Experiment Methodology

Characterization Platform Configurations

Cluster 4 worker nodes (total 24 cores) + 1 manager node

Server Dell R730, Intel® Xeon® E5-2620

Memory 32GB, DDR4 for each node

Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3

Simulation Platform Configurations

Server Dell R740 Intel® Xeon® Gold 5218

Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3

Microservice Apps

➢ DeathStarBench [Cornell]

➢ TrainTicket [Fudan]

➢ Experiment Platform

➢ Experiment Benchmarks



28

Experiment Methodology

Category Scheme Descriptions

Simple

Scheduler

FairSched FCFS, Allocate equal resource

CurSched FCFS, Allocate by current load

Advanced

Scheduler

PartProfile Priority, Allocate by performance profile

FullProfile Priority, Allocate by overall profile

MLP scheme v-MLP Our Proposal

➢ Existing scheduling schemes

Category Requests

High 𝑉𝑟
Compose-post in SN

getCheapest in TT

Mid 𝑉𝑟 basicSearch in TT

Low 𝑉𝑟
Read-home-timeline in SN

Read-user-timeline in SN

➢ Evaluated workloads



29

70

80

90

100

O
v
e
ra

ll 
re

s
o
u
rc

e
 u

ti
liz

a
ti
o

n

Time (s)

FairSched CurSched PartProfile FullProfile v-MLP

Evaluation Results: Effectiveness & Efficiency

0

0.2

0.4

0.6

0.8

1

Low Mid High Low Mid High Low Mid High

Pulse-like Load Fluctuated Load Periodic Load

N
o
rm

a
liz

e
d
 Q

o
S

 V
io

la
ti
o
n

FairSched CurSched PartProfile FullProfile v-MLP

Load peak

➢ v-MLP can maintain the QoS 

requirements of microservices.

➢ v-MLP works better under periodic 

load and high 𝑽𝒓 requests.

➢ v-MLP achieves higher resource 

utilization from beginning.

➢ v-MLP can maintain the resource 

utilization with workload peaks.



30

0

0.2

0.4

0.6

0.8

1

H:M:L=1:1:1 H:M:L=2:1:1 H:M:L=1:1:1 H:M:L=2:1:1 H:M:L=1:1:1 H:M:L=2:1:1

Pulse-like Load Fluctuated Load Periodic Load

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

FairSched CurSched PartProfile FullProfile v-MLP

0

5

10

15

20

25

1x 1.5x 2x 1x 1.5x 2x 1x 1.5x 2x

50th-Percentile Latency 90th-Percentile Latency 99th-Percentile Latency

L
a
te

n
c
y
 (

m
s
)

FairSched CurSched PartProfile FullProfile v-MLP

Evaluation Results: Performance

➢ v-MLP can reduce request 

latency at each percentile.

➢ v-MLP works better under high 

load and 99th tail latency.

➢ v-MLP achieves higher 

throughput.

➢ v-MLP works better under periodic 

load and high 𝑽𝒓 requests.



Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work



32

Conclusions

➢ Insights

➢ Microservice characteristics

➢ Potential of new parallelism

➢Microservice Level Parallelism

➢ Interface layer between upper and lower

➢ Coordinate various microservice chains

➢ Tackle the uncertainty in dynamic cloud 

➢Help for next-generation cloud-native design.

➢We will expand MLP towards more directions in future.



33

Thank You!

Exploring Efficient Microservice Level Parallelism

Xinkai Wang, Chao Li, Lu Zhang, Xiaofeng Hou, Quan Chen, Minyi Guo

unbreakablewxk@sjtu.edu.cn


