Exploring Efficient Microservice Level Parallelism

Xinkai Wang, Chao Li, Lu Zhang, Xiaofeng Hou, Quan Chen, Minyi Guo

Department of Computer Science and Engineering

May 2022

Contents

1. Introduction: Monolithic to Microservice

2. Motivation: Microservice Characterization

3. Microservice Level Parallelism

4. Evaluation: Effectiveness, Efficiency, Performance

5. Conclusions and Future Work

- ,):_ A R 2
) YIEX ALY

SHANGHALI JIAO TONG UNIVERSITY

Contents

1. Introduction: Monolithic to Microservice

- ,):_ A R 2
) YIEX ALY

SHANGHALI JIAO TONG UNIVERSITY

The Emerging Microservice Architecture

Microservice disaggregates a monolithic application into many tiny services,

each of whom can be managed and tested independently.

'“"..
I Layer

-————__—ﬁ——

__---_'-_---I

|Funct|nn ' '|
| Layer

Monolithic Architecture Microservice-based Architecture

The Revolution of Cloud Services

Microservices empower organizations to build and run scalable, agile, and

resilient applications in dynamic environments.

FaaS Scalability

(Function)

Saas (Software)

Microservice Technologies

e AL E @

Docker Kubernetes Lambda Azure Functions Microsoft .Net

Industrial Applications of Microservices

Many IT companies such as Alibaba and Amazon are actively embracing this

new software development paradigm.

End Users

Partial
Customer List
(i e)
COX [ebayinc Google
unper e NOKIA s
e YAHOO! ANEW, HOwDA

FedEx IKEA #mocy (§)

sarevay
= O .
S
¥ ey Walmart Caltech

[L Hines tprone O

Anwron 3 Lars Dyrarvin
Armas e i
AAcERCH Wargan Stankey thﬂ wy

Amazon DynamoDB Built
with Microservices

Prior Work on Microservices

Prior work: microservice design and optimization.

» Microservice-scale power management

[SC’20, HPCA’19] Power Magagement

» QoS-aware performance optimization

[IPDPS,21, SOCC,21] Perf. Opgmlzatlon

» Designing microservice applications
Microservice Arch.

[ICSE’18, ASPLOS’19] o
» Service-oriented architecture

Software Arch.
[AWS, Google, Microsoft, etc.] Q

» Fine-grained software design

. Granular Design
— O .

[Container, Lambda, etc.]

We enhance the QoS-aware performance optimization for microservices.

» Fully exploiting the unique characteristics of microservices.

Different Level of Parallelisms

Parallelism has been exploited at various levels of the system design for

better performance and efficiency.

Ol
> Instruction Level Parallelism (ILP) £ g‘ A
=
Multiple instructions can be executed concurrently. A|IO|E
» Thread Level Parallelism (TLP) ® [E ? g
E
Multiple threads can be executed concurrently. i 8 % 8
> Request Level Parallelism (RLP) L (@] |[]) | (] (@)
o [A[A[D] [A]|T]Al
Multiple requests can be executed concurrently. o OfA Ol|A]=
| A][]) e | (@) {
» Data Level Parallelism (DLP) 2AAAAARARA
. JEL Ll L L 1 X L X,
Instructions operate concurrently on several data. FlI00000O0000

» Other emerging parallelisms...

There are new types of parallelisms with new architectures and applications.

10

Contents

2. Motivation: Microservice Characterization

- ,):_ A R 2
) YIEX ALY

SHANGHALI JIAO TONG UNIVERSITY

Impact of Application Heterogeneity

o o
[= R

40

Execution Time (ms)
e [L
= = = o

O025% Latency

m50% Latency

m /5% Latency

m99% Tail Latency

7_“

)

l

route

train

Low-Variation Microservices

seat

Mid-Variation Microservices

travel

__config / order
High-Variation Microservices

e N

Some microservices are
highly variable due to

application heterogeneity.

/

The application heterogeneity will cause the variation of microservice

execution time under various user invocations.

> It is often caused by the actual execution logic of the microservice program.

» Different microservice exhibits various degree of application heterogeneity.

12

Impact of Resource Provisioning

[- CPU Utilization [Memory Usage I |O Bandwidthl \

Obs.1: Microservices have

1 2 3 4 5 6 7 8 9 10 11 12 /
CPU-intensive Microservices i i i i i i i

Ir,lj Obs.2: The resource demand

H i i H i i I I unique resource requirements

and can be collocated.

Execution/Suspension
= %] w = (%]

&~
o

S 30
E I [!] dl .J. ! | ||ll'|
=20 1L YA | -‘ { ., | i\ ,' | ', may not be always met under
6107 | - \ L U |, I"' W \ h‘ 1 highly dynamic outer traffic.
WU W LW AN
0 : | . /
100000 200000 300000 400000 500000 600000 700000 800000
Time (s)
Highly Variable - CPU Res. 1.00 Mod. Variable - 10 Res. 1.00 Less Variable - MEM Res. . . \
Obs.3:Microservices are
L 07 0757 0.731 60% differently sensitive to
8 —é— 80%
0.50 1 0.50 1 0.50 1 =& 100% resource shortage from the
erspective of performance.
0.25 T T 0.25 T T 0.25 r T p p p /
0 40 80 120 0 40 80 120 0 40 80 120
Execution Time (ms) Execution Time (ms) Execution Time (ms)

The performance implication of microservice resource relationship is complex.
13

Impact of Communication Overhead

Network Delay(ms)

N (a) Characterization on Single Machinem (b} Characterization Across Machines

ma

o 2 1 N\
2 5 - 80) ,
80 3 5 Some microservices show|
70
60 2 3 - 80 highly uncertain
50 2B 5 2 1 o
10 3 5 20 communication overhead.
30 7B 2 2 /
p 2 233 2 3 2 a0
9 9
10 3 _ 2 3 5
0 N 92 2 EX 0
Microservices Microservices

Stochastic noises in the microservice environment add up the complexity of
scheduling of normal system operations.
» Here we focus on the variation of communication overhead between microservices.

» Communication time variations on single machine are more stable than across machines.

14

Summary of Design Challenges

Due to Application Heterogeneity

and Resource Provisioning.

: 1.1 ion logi
[The end time of] nner execution logic

caller microservice

1
1
1
1
1
2. Outer resource budget !
1
1
1
1
1
1
1
1

Tightly combined with

n E)-Ce-C

______________________ ' aligned and ideal

. ldeal Execution ! ; : ft' execution without contention.
' ! 1 [1 b2

! s)-Ce J-C7 dmmsemnnoooocceos s

| —| [- :] —| I: 3. The communication|!' The start time of | I

: L 3 7 2 4 ! overhead ' callee microservice | \

5 2 . \ J -

1 1 1

Stochastic noises complicates

system management.

The crux of the problem is two-fold:
> We need to know how different microservices should be coalesced.

» We must ensure fairly accurate alignment throughout the process.

15

Contents

3. Microservice Level Parallelism

R

% &) ..
Zumrress/ SHANGHAI JIAO TONG UNIVERSITY

Potential of Microservice Level Parallelism

Seneeliig Chip Level System Level
Level

. : Instruction : : Monolithic
Granularity Instruction Microservice o

Stream Application

Key Opti. : :

Approach Temporal Spatial Temporal Spatial
AN | [

Microscopic Critical Void Macroscopic

instruction scheduling request scheduling

MLP is critical and necessary:
» MLP is orthogonal to existing parallelism model.
» MLP focuses on microservice chain scheduling.

» MLP considers interrelationship and uncertainty of microservices.

Core Metric: Volatility of Requests

Based on characterization, microservices exhibit volatile behaviors.

» We define volatility of request (V,.), indicating the likelihood of the request

to deviate from its ideal execution conditions.

I 1(low) — 3(high) Inner logic variability

n
V,= «a leixsixci/n
=1 S 1(low) — 3(high) Sensitivity to resource

C |[1-3 with Var(RTT) Communication overhead

Understanding volatility helps make prudent decisions.
» Low volatility implies the start time of microservices is more predictable and less volatile.

» High volatility implies the start time of microservices is less predictable and more volatile.

18

Volatility-aware Microservice Level Parallelism

v-MLP
Interface
Layer

Server Driver CPU [Mem] [10] [Disk] [Others]

» V-MLP acts as the interface layer between the request handler and the server driver.

» Vv-MLP aims at the efficient resource management for microservices in datacenters.

19

Volatility-aware Microservice Level Parallelism

Reduest Handler D

Request Schedule Uncertain
Information Decisions Disturbances
v-MLP S Self-organizing L |deal Execution State —> Self-healing
Interface Modul Module
Layer [——> odule < Real-time Adjustment —
I
Resource Resource
Demand Allocation
Server Driver CPU [Mem] [10] [Disk] [Others]

» Self-organizing module considers request information to coalesce microservices.

» Self-healing module handles uncertain disturbances during executions.

20

Design Principles of Self-organizing Module

» Periodically refreshes the status of machines in the scheduling cluster by:

» Future remaining resource status

> Future microservice execution status

» Periodically reorder the request waiting queue by:
» Volatility of the request
» Arrival time of the request
» Shortest execution time of the microservices
>

SLA level of the request

» Assign the microservices to machines with enough resource by volatility:

» Satisfy resource demand within 18t percentile of latency for low volatility.
> Satisfy resource demand within 50" percentile of latency for mid volatility.

> Satisfy resource demand within 99t percentile of latency for high volatility.

21

Design Principles of Self-healing Module

» Self-healing module handles uncertain disturbances in real-time execution

based on the ideal microservice pipeline produced by self-organizing module.

» Delay Slot Mechanism:

» Working with waiting independent microservices (nonempty delay slot).

» Advance the execution of independent microservices to fill the resource vacancy.

> Resource Stretch Mechanism:

» Working with no waiting independent microservice (empty delay slot).

» Adjust the resource usage of executing microservices to fill the resource vacancy.

! Ideal Microservice Pipeline i Executing |
I 8-y e U :
1 11 1

O)—0CJ (2 4
0 (=] @ -

B e it " Alloc. res. of pyService 3!

1
Resource Stretch :
6.]-L7_] :
1
1

___ 1
/[(A)(B)® (® Delay Slot Empty Delay Slot

23

Contents

4. Evaluation: Effectiveness, Efficiency, Performance

- ,):_ A R 2
) YIEX ALY

SHANGHALI JIAO TONG UNIVERSITY

Experiment Methodology

» Experiment Platform

Cluster 4 worker nodes (total 24 cores) + 1 manager node
Server Dell R730, Intel® Xeon® E5-2620
Memory 32GB, DDR4 for each node
Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3
| simulation Platform Configurations |
Server Dell R740 Intel® Xeon® Gold 5218
Host OS Ubuntu 18.04.5 LTS, Docker 20.10.3

» Experiment Benchmarks

Microservice Apps - S

» DeathStarBench [Cornell] e= e
» TrainTicket [Fudan]

26

Experiment Methodology

> Evaluated workloads

Compose-post in SN

High V; ;
getCheapestin TT

Mid V. basicSearch in TT
Read-home-timeline in SN

Low V. .
Read-user-timeline in SN

» Existing scheduling schemes

Simple FairSched FCFS, Allocate equal resource
Scheduler | CurSched FCFS, Allocate by current load
Advanced PartProfile Priority, Allocate by performance profile
Scheduler | FullProfile Priority, Allocate by overall profile

MLP scheme v-MLP Our Proposal

28

Evaluation Results: Effectiveness & Efficiency

| OFairSched @CurSched BPartProfle BFullProfle Ev-MLP |

) N

c
o g o
5 0.8 » v-MLP can maintain the QoS
)
; 0.6 requirements of microservices.
o
© 04 > v-MLP works better under periodic
(&)

0.2 :
= load and high V,. requests.
g o /
S Low | Mid | High | Low | Mid | High | Low | Mid | High

Pulse-like Load Fluctuated Load Periodic Load
| —o—FairSched ——CurSched —=—PartProfile ——FullProfile —e—v-MLP |

100 | I
IS ‘ » v-MLP achieves higher resource
o . —
S utilization from beginning.
5 90
8 » v-MLP can maintain the resource
>
o e . .
@ utilization with workload peaks.
£ 80 peaks.
[
[}
>
o

70

Load peak Time (s)

29

Evaluation Results: Performance

—0—FairSched ——CurSched —@—PartProfile ——FullProfile —@—v-MLP

_.20 » v-MLP can reduce request
2]
S .
<15 latency at each percentile.
[S]
c 9
g1 > v-MLP works better under high
-

> load and 99! tail latency. /

0

1x 1.5x 2X 1x 1.5x 2X 1x 1.5x 2X
50th-Percentile Latency 90th-Percentile Latency 99th-Percentile Latency
OFairSched OCurSched @ PartProfile & FullProfile Ev-MLP
o 1 ™\
>
Zos > v-MLP achieves higher
e - —
206 throughput.
|_
© 04 > V-MLP works better under periodic
T :
£ 02 load and high V, requests. /
s}
Zz 0
H:M:L=1:1:1 H:M:L=2:1:1 | H:M:L=1:1:1 H:M:L=2:1:1 | H:M:L=1:1:1 H:M:L=2:1:1
Pulse-like Load Fluctuated Load Periodic Load

30

Contents

5. Conclusions and Future Work

R

% &) ..
Zumrress/ SHANGHAI JIAO TONG UNIVERSITY

Conclusions

» Insights

> Microservice characteristics

» Potential of new parallelism

> Microservice Level Parallelism

» Interface layer between upper and lower
» Coordinate various microservice chains

» Tackle the uncertainty in dynamic cloud
» Help for next-generation cloud-native design.
» We will expand MLP towards more directions in future.

32

.0

Thank You!

Exploring Efficient Microservice Level Parallelism

Xinkai Wang, Chao Li, Lu Zhang, Xiaofeng Hou, Quan Chen, Minyi Guo
unbreakablewxk@sjtu.edu.cn

