
Exploring Efficient Microservice Level Parallelism
Xinkai Wang1, Chao Li1, Lu Zhang1, Xiaofeng Hou2, Quan Chen1, Minyi Guo1

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2ACCESS, Hong Kong University of Science and Technology

Emails: {unbreakablewxk, luzhang}@sjtu.edu.cn, {lichao, chen-quan, guo-my}@cs.sjtu.edu.cn, houxiaofeng@ust.hk

Abstract—The microservice architecture has recently become a
driving trend in the cloud by disaggregating a monolithic applica-
tion into many scenario-oriented service blocks (microservices).
The decomposition process results in a highly dynamic execu-
tion scenario, in which various chained microservices contend
for computing resources in different ways. While parallelism
has been exploited at both the instruction/thread level and
the task/request level, very limited work has been done with
the grain-size of a microservice. Current parallel processing
solutions are sub-optimal as they neither capture the unique
characteristics of microservices nor consider the uncertainty
arises in the microservice environment. In this work we introduce
microservice level parallelism (MLP), a technique that aims to
precisely coalesce and align parallel microservice chains for better
system performance and resource utilization. We identify major
issues that prevent servers from effectively exploiting MLP and
we define metrics that can guide MLP optimization. We propose
v-MLP, a volatility-aware MLP that is able to adapt to a highly
heterogeneous and dynamic microservice environment. We show
that v-MLP can reduce tail latency by up to 50% and improve
resource utilization by up to 15% under various scenarios.

Index Terms—Microservice, Parallelism, Request Management

I. INTRODUCTION

With an emphasis on agile development and scalable de-
ployment, microservice has recently become a key trend in
building modern cloud applications [19], [37], [45]. In general,
the microservice design approach is about disaggregating
conventional monolithic applications into massive scenario-
oriented microservices communicating through light-weight
network protocols. Each microservice is self-contained, en-
capsulating its own code, data, and dependencies in a separate
context. Considering the ability of microservice in building
and running scalable applications, many IT companies such
as Microsoft [24] and Alibaba [10] are actively embracing
this new software development paradigm.

Microservice applications have several important features.
Firstly, the functionality of microservice application is decom-
posed. Unlike a monolithic application in Figure 1(a) where
each request triggers the entire application, each microservice
is supposed to accomplish a specific function and a request
only invokes related microservices. In addition, microservices
have different invocation patterns, as shown in Figure 1(b).
The invoked microservices may form directed acyclic graphs
(DAG), where each vertex represents a microservice and the
edge represents caller-callee relationship between any two
microservices. During runtime, microservice DAG generally
follows topological sorting and produces a chain-structured

Request

CPU-tied μS

Mem-tied μS

Monolithic App

μService App

A B A B C…

C

C

C

A

A A

B

B

B

A A A… B B B… C C C…

1

2
6

4

5

3

2

3

(a) Monolithic (b) Microservice

IO-tied μS

1

Fig. 1. Execution characteristics of microservice applications (The numbers
represent different types of microservices)

execution sequence. Moreover, due to its fine-grained function-
ality and chained structure, microservices are widely reused
to serve different requests. The function of microservices is
independent of the function of requests, thus offering interop-
erability across the application boundary.

In spite of various advantages, emerging microservice ap-
plications also pose new challenges for request scheduling and
resource management. Today, parallelism has been exploited
at various levels of the system design for better performance
and efficiency. However, there is still a critical void between
the existing macroscopic request scheduling (optimized for
server utilization) and the microscopic instruction scheduling
(optimized for chip performance). As we enter the cloud-native
era, the pressure for increased performance and cost-efficiency
in data centers drive us to think about more aggressive
parallelism optimization at the microservice level.

In this paper we consider the problem of extracting paral-
lelism from parallel microservice chains invoked by various
requests. We call this new form of parallelism as Microser-
vice Level Parallelism (MLP). There are two prerequisites
that lay the foundation for MLP. Firstly, the chained struc-
ture splits each request into several independent phases, i.e.,
microservices, reducing the minimum execution granularity.
Secondly, service alignment can be planned in advance since
both invocation patterns and the resource types that each
microservice demand can be foreseen. In our mind, MLP looks
to harness the computing power of cloud-native infrastructures
in microservice scenarios. Servers can exploit MLP by pro-
cessing requests in parallel and strategically aligning multiple
associated microservice chains in a fairly precise manner.

Importantly, exploiting MLP can be non-trivial due to the
inherent uncertainty and dynamicity present in microservice
environment. we observe that microservice applications are
susceptible to the influence of different types of software

and architecture issues. (detailed in Section II). First, the
duration of a microservice can change greatly under different
user requests. Second, microservices are differently sensitive
to resource interference and contention. Worse, microservices
are faced with many stochastic noises widely spread in data
centers such as non-negligible communication time [27].

Existing parallel processing designs cannot adapt to the
above complex microservice issues. Traditional user request
scheduling schemes [11], [17], [36] use general heuristics to
manage server resources in a data center while ignoring the
performance-resource relationship of various microservices.
Although a few microservice-aware solutions [20], [26] con-
sider the heterogeneity of microservices, they ignore criti-
cal features such as the chained execution pattern and the
uncertainty that arise in the environment. With insufficient
MLP, a server node will be under-utilized due to the long
time interval between the caller and callee microservices. In
addition, system resources (CPU, memory, I/O, etc) are more
likely to be misused as a result of increased contention and
interference among co-located microservices.

To better exploit MLP, it is important to take into account
the uncertainty factors and enhance the robustness of mi-
croservice scheduling. We develop a solution to analyze and
tackle the uncertainty issue in microservice environment. We
define volatility of requests (Vr), which reflects the degree
of uncertainty of invoked microservices. Based on the new
metric, we devise volatility-aware MLP (v-MLP) to allow for
a more intelligent management of parallel microservice chains.
It serves as an interface layer that bridges the high-level user
request handler and the low-level server management system.

Specifically, v-MLP mainly comprises two parts: a self-
organizing module and and a self-healing module. Firstly, the
self-organizing module of v-MLP takes into account request
characteristics to coalesce complementary microservices from
different microservice chains. To ensure SLO for requests with
different Vr, we use a conservative approach when estimating
the execution time of a request. Secondly, the self-healing
module of v-MLP aims to handle uncertain disturbances and
allow the system to restore its ideal execution state. For
example, we put certain microservices in a delay slot so that
they can be advanced to take advantage of the idle resources.

We adopt a trace-driven evaluation approach to thoroughly
analyze v-MLP. We use two open-source microservice bench-
marks and three realistic workload patterns as input. We
compare v-MLP with four SOTA schemes on five types of
requests with different degrees of volatility. We show that v-
MLP could reduce the tail latency by up to 50% and improve
the resource utilization by up to 15%.

This paper makes the following contributions:
1) Analysis: We examine the performance implications of

both program logic and resource budget in the microser-
vice environment. We also investigate the performance
uncertainty faced by microservices in the real world.
We show that microservice applications present a new
challenge for request scheduling and concurrency opti-
mization in data centers.

2) Design: We envision the potential of Microservice Level
Parallelism (MLP), a well-aligned microservice execu-
tion pattern for better resource utilization. We present
MLP as an abstraction layer in the existing computing
stack. We propose v-MLP, which considers the uncer-
tainty issue of microservice applications.

3) Evaluation: We validate the effectiveness of our design
with extensive evaluation. We build a proof-of-concept
system with realistic traces as input. We show that v-
MLP can greatly outperform the SOTA request schedul-
ing schemes in terms of both efficiency and performance
under various workloads and situations.

The rest of the paper is organized as follows. Section
II performs workload characterization and further motivates
our work. Section III proposes the concept of microservice
level parallelism (MLP) and describes our solution v-MLP.
Section IV introduces our evaluation methodology. Section V
presents evaluation results. Section VI discusses related work
and Section VII concludes this paper.

II. WORKLOAD CHARACTERIZATION

In this section, we conduct an in-depth analysis of microser-
vice applications with representative benchmark suites from
both academia and industry. Our characterization reveals three
types of unique properties of microservice applications. We
demonstrate the challenges of managing microservice requests
in such a complex environment.

A. Impact of Application Heterogeneity

In this work we first investigate the variation of microservice
execution time under various user invocations. The variation
is often caused by the differences in actual execution logic of
the microservice program.

We experiment with TrainTicket, an industrial open-source
microservice benchmark [46]. It implements a microservice-
based railway ticketing application that supports two types of
requests, i.e., Advanced Ticketing and Basic Search. We deploy
TrainTicket with docker swarm on a cluster and the detailed
hardware configuration is presented in Section IV. We select
six representative microservices, provide them with abundant
resource, and invoke them respectively using different types of
request. In addition, we use two sub-systems to obtain exper-
imental data. By collecting the tracing data with Zipkin [2],
we can get the response time of requests and the execution
time of each microservice. In the meantime, we monitor the
resource usage of each microservice with Prometheus [5] and
cAdvisor [4]. In the following, we repeat each experiment 100
times and report the average results.

In Figure 2, we report the cumulative distribution function
(CDF) of a microservice’s execution time. We observe that
the execution time distribution varies greatly. For example,
the execution time of order almost doubles in the worst case.
This reflects a wide difference in the program execution logic
of a invoked microservices.

0

10

20

30

40

50

60

route train seat travel config order

Low-Variation Microservices Mid-Variation Microservices High-Variation Microservices

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

25% Latency 50% Latency 75% Latency 99% Tail Latency

Fig. 2. Impact of application heterogeneity on execution time of microsevices

The variability of execution logic is a inherent nature
of microservices. Based on the results, we can divide our
microservice workload into three types:

1) Low-variation microservices: The largest variation in
execution time is less than 15%.

2) Mid-variation microservices: The largest variation in
execution time is between 15% and 45%.

3) High-variation microservices: The largest variation in
execution time is larger than 45%.

B. Impact of Resource Provisioning
In addition to the inner execution logic of microservices,

many outer factors such as resource constraints may affect
microservice execution time as well. In this subsection, we
discuss the resource-performance relationship of microservices
and we present three key observations.

Observation 1: Microservices have unique resource re-
quirements and can be co-located to improve utilization.

We first study the resource usage behavior/characteristics
of different types of microservices. We mainly consider CPU,
memory, and IO bandwidth resources and analyze their influ-
ence on application performance. Figure 3(a) shows the ratio
of the resource demand in execution state to the resource
demand in suspension state of 12 microservices obtained
from SocialNetwork, an academic open-source microservice
benchmark [13]. In the experiment, we provide all the eval-
uated microservices with abundant resources and record their
resource usage using our monitoring sub-systems.

In contrast to monolithic applications that are generally
bounded by mixed resource types, we observe that a mi-
croservice faces fewer resource bottlenecks upon execution.
For example, memory capacity is not a bottleneck of the
studied microservices. In this work, microservices can be
CPU-intensive, IO-intensive, or CPU&IO-intensive.

Observation 2: The resource requirements may not be
always met under highly dynamic microservice traffic.

Like conventional cloud, the microservice environment also
faces resource provisioning issues. Figure 3(b) shows the
server utilization of a container running microservice in a real
data center. The results are based on our analysis of an open-
source Alibaba cluster log [3] that encompasses an eight-day
trace of containers from a production cluster.

It is evident that the workload fluctuations are signifi-
cant and there are many peaks caused by frequent traffic

CPU-intensive Microservices IO-intensive Microservices CPU&IO-intensive Microservices

(a) Various resource dependency of microservices

100000 200000 300000 400000 500000 600000 700000 800000
Time (s)

0

10

20

30

40

C
PU

 U
til

iz
at

io
n

(b) Highly dynamic traffic faced by microservices

0 40 80 120
Execution Time (ms)

0.25

0.50

0.75

1.00

C
D

F

0 40 80 120
Execution Time (ms)

0.25

0.50

0.75

1.00

0 40 80 120
Execution Time (ms)

0.25

0.50

0.75

1.00
Less Variable - MEM Res.

60%
80%
100%

Highly Variable - CPU Res. Mod. Variable - IO Res.

(c) Different sensitivity to system resource capping

Fig. 3. Microservice applications are susceptible to the influence of several
software and hardware characteristics

surges. Considering that resource over-subscription has be-
come a common practice for cloud providers to improve
cost-efficiency [42], the resource demand peaks may not be
always satisfied. Resource over-subscription makes sense if
the system utilization is low. However, when the microservice
traffic increases, it would cause resource supply shortage and
unpredictable performance interference.

Observation 3: Microservices are differently sensitive to
resource shortage from the perspective of performance.

As stated above, microservices require different types of
resources and resource shortage exists. Therefore we fur-
ther investigate the relationship between microservices per-
formance and resource budget using SocialNetwork. Figure
3(c) shows the CDF of the execution time of different types
of microservices under varying resource budget. We manually
lower the resource supply to create resource contention.

We find that the execution time of microservices is differ-
ently sensitive to resource restrictions, thus increasing the dif-
ficulty of predicting system performance. Microservices can be
categorized into three types by looking at how the mean value
and variance of execution time change with resource capping.
1) Highly variable microservice: Resource shortage/contention
would increase both the mean value and variance of execution
time. 2) Moderately variable microservice: Resource short-
age/contention would increase the mean value while keeping
the variance unchanged. 3) Less variable microservice: Both
the mean value and the variance of execution time are not
affected. It is uncommon in microservice scenarios.

Microservices

max
90
80
70
60
50
40
30
20
10

N
et

w
or

k
D

el
ay

(m
s)

2 1
2 5
3 5

2 3 85
2 90 5 2 1
3 5

1 2 4 3 91 2 2
2 2 3 3 90 2 3 2
3 2 92 3 92 5
95 94 3 92 2 90

(a) Characterization on Single Machine

Microservices

max
90
80
70
60
50
40
30
20
10

5 7 5 5 99 6 5 6
5 1 93 2 95 1 3 93
2 94 91 3 1

93 5 92 2
2 1 90

92
1

(b) Characterization Across Machines

20

40

60

80

00 0

Fig. 4. Highly uncertain communication overheads

Summary: The three observations above reveal that the per-
formance implication of microservice resource usage can be
complex, which poses new challenges for us to accommodate
scale-out microservice workload.

C. Impact of Communication Overhead

The inner execution logic and outer resource constraints
are relatively predictable. Apart from these factors, there are
also stochastic noises in the microservices environment. In
particular, we characterize the communication time between
microservices to study the uncertainty of microservices exe-
cution time. We perform two sets of experiments. Figure 4(a)
deploys TrainTicket on a single machine with docker-compose.
We generate 100 requests and record the communication time
of 10 callee microservices from the caller microservice. Figure
4(b) deploys the studied callee microservice on one machine
and the other microservices on another machine with docker
swarm to study the communication time across machines.
For each callee microservice, we respectively generate 100
requests and record the communication time of the callee
microservice from its caller.

In Figure 4, we present the distribution of microservice
communication time. The digits on each block represent the
frequency of execution within certain latency range. We find
that the average communication time between microservices
on a single machine is significantly lower than that across
machines. It indicates that communication time variations on
a single machine are more stable than those across machines
due to the longer network links. Meanwhile, there is a pos-
sibility that communication time increases (as shown in the
green blocks) due to network congestion or changed routing.
Without proper treatment, the above uncertain communication
time issue would disturb normal system operation and cause
degraded scheduling effectiveness.

D. Summary of Design Challenges

Current utilization-based schedulers are not prepared for the
microservice environment for two reasons. First, they cannot
accurately predict the end time of a caller microservice. Based
on our analysis in Subsections II-A and II-B, the end time of
the caller microservice is affected by both the actual execution
logic triggered by the request and the resource budget at the
time. Second, they often overlook the uncertainty of commu-
nication overhead between the caller and callee. As discussed

Two Request DAGs

41

3

2

5

6

7

𝑡1

System Status

time𝑡2Executing

Services

No CPU

remaining

m1 m2 m1 m2

1
3

2
4

5 6 7

CPU Memory IO

A B

1 3 2 4

𝑡1 𝑡2

1 3 2 4

𝑡1 𝑡2
Ideal Execution

The end time of

caller microservice

The beginning time of

callee microservice
C3.The duration of

communication

C1. Inner variation

C2. Resource impact

5 6 7

affected

by

5 6 7

The end time of

caller microservice

1. Inner execution logic

2. Outer resource budget

3. The communication

overhead

The start time of

callee microservice

Fig. 5. Summary of design challenges in microservice scheduling

in Section II-C, the communication issue represents a non-
deterministic factor which complicates system management.

Figure 5 further illustrates the challenge of microservice
scheduling. Assuming that there are two requests A (involv-
ing microservices 1-4) and B (involving microservices 5-
7). The two requests can finish without any resource con-
tention/interference in an ideal situation given by the bottom
left of the figure. Nevertheless, the scheduler could estimate
the end time of caller microservice 1 in a wrong way. Even
worse, the communication between microservices 1 and 3
could experience unexpected latency. In this case, the start
time of microservice 3 is mispredicted and the actual execution
of the two requests no longer maintains the ideal resource
efficiency. As the right part of the figure shows, there are direct
resource contention between microservices 3 and 6, and the
system incurs performance degradation at the timestamp t2.

In sum, scheduling microservice requests and ensuring their
efficient execution can be non-trivial. The crux of the problem
is two-fold. On the one hand, we need to know how different
microservices should be coalesced. On the other hand, we must
ensure fairly accurate alignment throughout the process.

III. MICROSERVICE LEVEL PARALLELISM

A. Definition of Microservice Level Parallelism

According to our analysis, at the microservice level, the
workload often exhibits irregularity in behavior and uncer-
tainty in demand. Being able to fine tune the system at this
granularity is of great importance for emerging cloud-native
platforms. Traditional task scheduling methods need to be re-
examined to unleash the full potential of the system.

In this work we propose Microservice Level Parallelism
(MLP), where various chained microservices generated by
different requests are the basic units of parallelization. MLP
intends to narrow the wide gap between macroscopic request
scheduling and microscopic instruction scheduling. There is
an opportunity of improved performance with well-aligned
execution of microservice-based applications.

In Table I we compare MLP with three forms of paral-
lelism. Overall, they correspond to different granularities of
parallelism. At lower levels, contemporary computer systems
support Instruction Level Parallelism (ILP) and Thread Level
Parallelism (TLP). ILP targets at exploiting pipeline schedul-
ing for efficient instruction execution, while TLP focuses
on executing many threads to improve hardware utilization.

TABLE I
ILP VS TLP VS RLP VS MLP

Parallelism ILP TLP MLP RLP
Scheduling

Level Chip Level System Level

Granularity Instruction Instruction
Stream Microservice Monolithic

Application
Key Opti.
Approach Temporal Spatial Temporal Spatial

At a higher level, Request Level Parallelism (RLP) plays a
dominant role for data center-scale computing in the cloud
era. It mainly considers the parallel execution of enormous
online requests across machines.

MLP is orthogonal to existing parallelism models. Basically,
it is very much like pipeline parallelism, which organizes a
program as a sequence of execution stages. In each stage, we
process certain amount of data and then pass the processed
data to the next stage. Different from ILP and TLP, the
scheduling granularity of MLP becomes much larger. Each
user request involves a chain of microservices which may
spread across computing nodes and a client needs to go
through multiple microservices for processing. In addition,
MLP is not RLP and it complements RLP perfectly. RLP can
be viewed as managing gigantic service program with little
need for communication or synchronization. In the microser-
vice scenario, each larger problem (request) are divided into
much smaller program logic (microservices) and microservices
are more sensitive to resource interference and stochastic
noises. In sum, MLP aims to enhance system efficiency by
taking into account the interrelationship of microservices and
their environment when making scheduling decisions.

B. Volatility of Request

Considering the volatile behavior of microservices, opti-
mizing MLP is about giving the system more control on the
workload in a highly dynamic execution environment.

Based on our characterization, we define volatility of re-
quests (Vr), indicating the likelihood of the request to deviate
from its ideal execution conditions. For a request that invokes
n microservices, its volatility is given by:

Vr = α×
n∑

i=1

Ii × Si × Ci/n

where I is the variability related to inner program execution
logic (detailed in Section II-A), S is the sensitivity to resource
budget (detailed in Section II-B), and C represents the commu-
nication overhead levels (detailed in Section II-C). In Table II
we show the intensity scale of different design considerations.

TABLE II
SELECTION RANGE OF VOLATILITY TERMS

Abbr. Value Range Descriptions
I 1(low) - 3(high) Inner Logic Variability
S 1(low) - 3(high) Sensitivity to Resource
C 1-3: Var(RTT) from 100 to 400 Communication Overhead

Resource

Allocation

Real-time Adjustment

Overall Design

Server Driver CPU Mem IO

Request Handler Request1 ···

Interface

Layer

Self-Organizing

Module

Self-healing

Module

System

Status

v-MLP

Interface

Layer

Uncertain Disturbance

Schedule

Decisions

Request2

Ideal Execution State

Request

Characteristics

Uncertain

Disturbances

Others

Fig. 6. Overview of volatility-aware Microservice Level Parallelism

Here, low volatility implies that the start time of the callee
microservice is more predictable and less volatile. It is much
easier for one to maintain efficient execution of microservice
chains that have low volatility. For heterogeneous requests
with different Vr, understanding the volatility of requests
allows the scheduler to make prudent decisions that could
enhance system efficiency. We introduce our solution for
efficiently exploiting MLP in the following subsection.

C. v-MLP: Volatility-aware Microservice Level Parallelism

With an understanding of user request, servers can better
accommodate microservices. We devise volatility-aware MLP
(v-MLP) to allow for a more intelligent management of
parallel microservice chains. As shown in Figure 6, v-MLP
serves as an interface layer that bridges the high-level user
request handler and the low-level server hardware. It could
reduce the gap between the upper request scheduling and the
lower instruction scheduling. Specifically, v-MLP automates
the about process through two elements: a self-organizing
module and and a self-healing module. The two modules
cooperate with each other.

1) Self-organizing Module: The self-organizing module
takes into account request features to coalesce microser-
vices from different microservice chains. It examines the
dependency of different microservices and analyzes their
resource consumption characteristics to form a ideal
execution pipeline on the server. It aims to maximize
system utilization while avoiding resource contention.

2) Self-healing Module: The responsibility of v-MLP’s
self-healing module is to handle any uncertain distur-
bances during execution. It aims to restore the system
to its ideal execution status, if necessary. The module
uses a delay slot mechanism to reduce server idleness.
Meanwhile, it adjusts microservice resource consump-
tion on the fly through a resource stretch mechanism.

D. Interface Layer

As an interface layer, v-MLP abstract away the complexity
of the underlying hardware. During runtime, v-MLP interact
with the system to gain necessary information for scheduling.

TABLE III
RESOURCE MONITORS AND CONTROLLERS

Resource Type Monitor Controller
CPU dockerstats cgroups cpuset

Memory dockerstats cgroups memory.limit in bytes
IO Bandwidth dockerstats cgroups net cls

It features a local monitor and a control toolkit on each
container that runs microservices. We use several ready-to-use
system interfaces and methods to obtain the execution statistics
of microservices. Table III lists the related tools for monitoring
and controlling the hardware resources such as CPU cores,
memory usage, and IO bandwidth. We uses open-source
distributed tracing systems such as Jaeger [1] and Zipkin [2]
to obtain the execution time of each microservice and the
response time of each request. The information collected is
further fed into the self-organizing module to make decisions
and is stored as historical traces for future scheduling.

v-MLP execute resource management decisions with special
care. It can control the resource availability of each container
through mature tuning knobs and configuration files. For
example, it can manipulate the CPU, memory, and IO usage of
each container by restricting the processes and threads running
the containers. It can also limit the CPU upper bound of
containers by writing the expected value to resources-limits-
cpu. Since containers provide virtually isolated environments
with namespace, microservices can execute independently
within containers wherever there are enough resources.

E. Self-organizing Module

The self-organizing module of v-MLP takes into account
request characteristics to coalesce microservices from different
microservice chains. Specifically, we denote the request DAG
as r = (Vs, e) where Vs contains n microservice vertices and
e is their dependency. For each microservice si ∈ Vs, we
describe it using a matrix si = [uTcpu, u

T
mem, u

T
io, l

T ,∆tT],
where column ux denotes the usage of resource x, column
l denotes the machine load, and column ∆t denotes the
maximum execution time slack. Each row of si is a historical
execution case of this microservice. In the meantime, we
can extract m microservice chain choices for each request as
cj = (s1j , s

2
j , · · · , snj) following topological sort.

We summarize the scheduling process of the self-organizing
module in Algorithm 1 . Firstly, it refreshes the status of each
machine in the scheduling cluster with real-time data collected,
which contains future resource status and microservice execu-
tion states. Then we define a reorder ratio R to sort the waiting
queue based on volatility Vr of requests. R is a comprehensive
consideration of SLA requirement and two classic scheduling
policies, i.e. First Come First Serve (FCFS) (tarr is the arrival
time of request) and Shortest Job First (SJF) (∆t0 is the
smallest element in ∆t column of si) to assign priority for
waiting requests. By normalized factor α, R is a normalized
value between (0, 1). Requests with higher R would be popped
from the waiting queue and examined execution status earlier.

Algorithm 1: Algorithm for Self-organizing Module
Data: µService Metrics & Timestamp t
Result: µService Pipeline

1 for ri in waiting queue do
2 Traverse machine status and refresh;
3 if Vr ≤ 0.3 then
4 for sk in each cj of ri do
5 for each machine mn and load do
6 Compare t→ t+ ∆t : lres ≥ ures;
7 If so, assign sk to mn;
8 end
9 end

10 end
11 if 0.3 ≤ Vr ≤ 0.7 then
12 for sk in each cj of ri do
13 let ∆t = 50% latency of x% executions;
14 Repeat traversing machines;
15 end
16 end
17 if Vr ≥ 0.7 then
18 for sk in each cj of ri do
19 let ∆t = 99% latency of x% executions;
20 Repeat traversing machines;
21 end
22 end
23 if This request is totally assigned then
24 Go to next request;
25 else
26 Switch ri with ri+1;
27 end
28 end

R = α× Vr × SLA× tarr
∆t0

Our algorithm traverses the waiting queue and the mi-
croservice chains of the popped request for scheduling. In the
scheduling process, microservices would be assigned to proper
machines with best efforts by comparing with the calculated
resource budget within execution time ∆t. We divide the
range of volatility into three parts: low (0 ∼ 0.3), medium
(0.3 ∼ 0.7), and high (0.7 ∼ 1). For requests with low
Vr, ∆t is directly determined by historical value. Meanwhile,
∆t of microservices invoked by request with medium Vr is
approximated by ∆t = 50% mean latency of x% executions
and ∆t of those with high Vr is approximated by ∆t =
99% tail latency of x% executions. Here x is a metric consid-
ering SLA requirement and volatility: x ∝ SLA × Vr, where
x is a value between 1 and 100. Then each microservice
is assigned to proper machines with best efforts within the
approximated execution time ∆t. If the scheduling request is
not able to execute without contention, the algorithm delay its
execution and advances the next request in the waiting queue.
The algorithm ends until the cluster is saturated.

time
s2

time

CPU Usage

s1
s2

Sequencing

s2 time

CPU Usage

s2 time

CPU Usage

Network

Delay

s1

Resource

Stretch

s2 time

CPU Usage

s1

time
s1

Upper bound

CPU Usage

CPU Usage

Network

Delay

time
s1

time

CPU Usage

s1 s2

Sequencing
CPU Usage

Execution

Delay

s2

s2

System

Change Resource

Stretch

(b) Resource Stretch

(a) Delay Slot A B Delay Slot

1 3

2 4

Late Invoke

1 3 2 4

𝑡1 𝑡2

Ideal Microservice Pipeline

5 Empty Delay Slot

1 3

Late Invoke

7

5 6 7

Resource Stretch

6

Alloc. res. of μService 3

6

1 3 2 4

···

2 4

5 6 7
6 7

Executing

μService

2 4

Fig. 7. Two mechanisms in self-healing module of v-MLP

F. Self-healing Module

With the self-organizing module, we aim to produce an ideal
microservice execution pipeline without resource contention
as shown in Figure 7. However, as stated in Section II-D, late
invocation of microservices would drive the scheduling results
out of control. In order to handle uncertain disturbances in
real-time execution and allow the system to restore its ideal
execution state, the self-healing module is equipped with two
mechanisms: delay slot and resource stretch.

We design a delay slot mechanism to handle the resource
vacancy in the pipeline. As shown in Figure 7, due to the late
invoke of microservice 3 (3 is predicted to start at t2), the
pipeline would stall for a period and resource in this period
would be wasted. Delay slot contains two kinds of candidates:
requests (A&B) and microservices (5&6). Requests are the
latter in the waiting queue following the reorder ratio R. Mi-
croservices are the waiting ones of executing requests without
dependence on executing ones and late-invoking ones. Without
dependence on these, candidates in the delay slot would not
conflict with executing ones or interfere with the relocation of
late-invoking ones. After the relocation of the candidates in the
delay slot, the self-healing module refreshes the system status
and pipeline arrangement for further scheduling. Equipped
with delay slot mechanism, v-MLP can fulfill the resource
vacancy in the pipeline and accelerate the waiting requests.

Sometimes the delay slot is lack of candidate microservices
since the system load may drop or fluctuate. Therefore, we
design a resource stretch mechanism for the empty delay
slot scenarios. We adjust the resource usage of executing
microservices using the resource controllers in Table III.
We give priority to microservices following two principles:
1) earliest deadline first (EDF); 2) high variability first (as
depicted in Figure 3(c)). As shown in Figure 7, we monitor
the idle resources allocated to late-invoking microservices and
reassign them to the executing ones with higher priority.

IV. EXPERIMENTAL METHODOLOGIES

We adopt a trace-driven evaluation approach to analyze the
large design space of v-MLP. The workflow of our trace-driven
evaluation is shown in Figure 8. Our simulator takes realistic
profiling data of open-source benchmarks as input. To obtain
the necessary execution traces, we run microservice workload
on a server cluster as described in Table IV.A. We deploy

Fig. 8. The workflow of trace-driven evaluation

TABLE IV
TESTBED CONFIGURATIONS

A. Workload Characterization Configurations
Cluster 4 worker nodes(total 24 cores) + 1 manager node
Server Dell R730, Intel(R) Xeon(R) E5-2620 @ 2.40GHz

Memory 32GB, DDR4 for each node
Network 1000 MB/s for each node
HostOS Ubuntu 18.04.5 LTS, docker 18.06.3-ce

B. Simulation Platform Configurations
Server Dell R740, Intel(R) Xeon(R) Gold 5218 @ 2.30GHz

Memory 64GB × 2, DDR4
HostOS Ubuntu 18.04.5 LTS, docker 20.10.3

TABLE V
EVALUATED REQUESTS DESCRIPTIONS

Category Request Descriptions

High Vr
compose-post Request to compose post in SN
getCheapest Request of advanced search in TT

Mid Vr basicSearch Request of basic search in TT

Low Vr
read-home-timeline Request to get home timeline in SN
read-user-timeline Requets to get user timeline in SN

a microservice benchmark (TrainTictket (TT) [46]) from the
industry and a microservice benchmark (SocialNetwork (SN)
[13]) from the academia. The configurations of our simulation
platform is shown in Table IV.B.

We conduct experiments with user requests of different
volatility. We consider five requests from three categories.
As shown in Table V, the High Vr category includes
the compose-post request from SocialNetwork and the
getCheapest request from TrainTicket. Microservices in-
voked by the above two requests are highly variable. The
Mid Vr category includes the basicSearch request from
TrainTicket. The Low Vr category, representing more stable
microservices, includes the read-home-timeline and the
read-user-timeline requests from SocialNetwork. In
our experiment, we ensure that different types of requests in
one category take up the same portion in a request stream.

We invoke each request stream using the workload patterns
as shown in Figure 9, which is drawn from a realistic data-
center [3]. L1 is a pulse-like workload peak, L2 is fluctuating
workload, and L3 is a periodic workload with wide peaks. The
maximum workload rate is 1000 request/s.

Table VI summarizes our evaluated request scheduling

Time (s)

Lo
ad

Time (s)

Lo
ad

Time (s)

Lo
ad

(a) L1: pulse-like

Time (s)

Lo
ad

Time (s)

Lo
ad

Time (s)

Lo
ad

(b) L2: fluctuating

Time (s)

Lo
ad

Time (s)

Lo
ad

Time (s)

Lo
ad

(c) L3: periodic

Fig. 9. Workload patterns in realistic datacenters

TABLE VI
EVALUATED SCHEMES DESCRIPTIONS

Category Scheme Descriptions
Simple

Scheduler
FairSched FCFS, Allocate equal resource
CurSched FCFS, Allocate by current load

Advanced
Scheduler

PartProfile Prior., Allocate by performance profile
FullProfile Prior., Allocate by overall profile

MLP Scheme v-MLP Our Proposal

schemes. We consider two important baselines: simple sched-
uler and advanced scheduler. Simple scheduler is a group of
trivial methods without consideration of historical data. FCFS
represents the First Come First Serve algorithm for request
waiting queue. FairSched represents the fair scheduling meth-
ods that give each microservice equal resources [22]. CurSched
allocates resources according to the current load of containers.
Advanced scheduler refers to a series of methods that schedule
microservices based on their historical and current status.
Prior. represents reordering of the waiting queue according to
specific priorities. PartProfile manages microservices to ma-
chines simply depending on the partial profiling [26]. FullPro-
file represent the state-of-the-art workload-specific strategies
that allocate resources based on the overall profiling of the
whole applications [11].

V. EVALUATION RESULTS

This section quantifies the effectiveness, efficiency, and
performance of v-MLP on a wide range of workload con-
figurations and different scheduling schemes.

A. Effectiveness Analysis

MLP aims to achieve aligned execution of microservices. A
basic requirement is to maintain the QoS requirement, which
indicates the effectiveness of our design. In Figure 10, we
compare the QoS violation rate of different schemes and we
normalize the violation rate of other schemes to v-MLP. We
study the effectiveness of scheduling with different levels of Vr
requests and different workload patterns. We find that among
all the schemes, v-MLP greatly outperforms simple schedulers
and FullProfile while exceeding PartProfile less. Considering
that PartProfile focuses on QoS violation, we believe v-MLP
is capable of maintaining QoS in real execution.

As for volatility consideration, Figure 10 shows that differ-
ent baseline schemes are relatively good at managing requests
with low Vr. In contrast, v-MLP excel at keeping QoS with
high Vr. As for workload consideration, we find that it is
more difficult to maintain QoS under workload patterns L2

0

0.2

0.4

0.6

0.8

1

High Mid Low High Mid Low High Mid Low

L1 L2 L3
N

o
rm

a
liz

e
d
 Q

o
S

 V
io

la
ti
o

n

S1 S2 S3 S4 MLP (Ours)

0

0.2

0.4

0.6

0.8

1

Low Mid High Low Mid High Low Mid High

Pulse-like Load Fluctuated Load Periodic Load

N
o

rm
a

liz
e

d
 Q

o
S

 V
io

la
ti
o

n

FairSched CurSched PartProfile FullProfile v-MLP

Fig. 10. Effectiveness: comparison of normalized QoS violation

and L3. Compared to the pulse-like workload (L1), L2 and
L3 are more fluctuating to the extent that normal schemes
cannot manage the requests very well. Overall, we show that
v-MLP is effective in maintaining QoS and we evaluate the
efficiency of v-MLP in the next section.

B. Efficiency Analysis

We evaluate the efficiency of MLP by looking at the
resource utilization of the system. The simulated cluster in-
cludes 100 machines and we consider CPU, memory, and IO
bandwidth resources of each machine. We observe that all the
three workload patterns contain load peaks and we examine
the adjustment on resource utilization with workload peaks.
In Figure 11, we present the overall resource utilization U of
cluster, which is defined as:

U =

∑
#nodes(ucpu + umem + uio)

#resource type×#nodes

ux is the utilization rate of resource x of one node and
U indicates the average efficiency of the cluster at each
timestamp. Here we consider 3 types of resources and the
number of nodes is 100. The whole scheduling process lasts
100 seconds and the load peak arrives at the 40th second.

As Figure 11 shows, v-MLP greatly outperforms simple
schedulers and slightly outperforms advanced schedulers at the
beginning. When the workload peak arrives, the utilization of
all schedulers increases at once due to the increased number
of scheduling entity. However, after a while, the utilization
of all schedulers decreases due to the mismatch of fully-
allocated resources and the complex dependency between
microservices. We find that the utilization of simple schedulers
decreases the most due to the simple strategies. The advanced
schedulers show lower utilization mainly due to ignorance
of dependency of microservices. On the contrary, v-MLP
experiences the same increase of utilization at beginning. It can
restore the normal utilization rate because the self-organizing
module considers the inner dependency of requests and makes
visionary scheduling decisions.

C. Performance Analysis

We also evaluate the performance of v-MLP by measuring
the end-to-end latency of requests and the throughput of the
system. The end-to-end latency is a major consideration of

70

80

90

100

O
v
e

ra
ll

re
s
o

u
rc

e
 u

ti
liz

a
ti
o

n

Time (s)

S1 S2 S3 S4 MLP (Ours)

Load peak
70

80

90

100

O
v
e

ra
ll

re
s
o

u
rc

e
 u

ti
liz

a
ti
o

n

Time (s)

FairSched CurSched PartProfile FullProfile v-MLP

Fig. 11. Efficiency: comparison of resource utilization with workload peaks

0

5

10

15

20

25

1x 1.5x 2x 1x 1.5x 2x 1x 1.5x 2x

50% Latency 90% Latency 99% Latency

L
a
te

n
c
y
 (

m
s
)

S1 S2 S3 S4 MLP (Ours)

0

5

10

15

20

25

1x 1.5x 2x 1x 1.5x 2x 1x 1.5x 2x

50% Latency 90% Latency 99% Latency

L
a
te

n
c
y
 (

m
s
)

S1 S2 S3 S4 MLP (Ours)

0

5

10

15

20

25

1x 1.5x 2x 1x 1.5x 2x 1x 1.5x 2x

50th-Percentile Latency 90th-Percentile Latency 99th-Percentile Latency

L
a
te

n
c
y
 (

m
s
)

FairSched CurSched PartProfile FullProfile v-MLP

Fig. 12. Performance: comparison of latency distribution

request scheduling [26] and we evaluate the performance of
different schemes under different workload levels. We adjust
the queries per second (QPS) in the simulation to proportion-
ally scale the workload levels. We consider a mixed request
stream which is composed of requests of different Vr values.

As shown in Figure 12, v-MLP greatly outperforms other
schemes at each percentile point of the distribution. In addition
to the 50th-percentile and the 90th-percentile latency, MLP is
also good at improving the 99th-percentile tail latency. The
key reason is that it considers the fairness of the request
waiting queue. Under high workload levels, v-MLP shows
better effectiveness since it contains the self-healing module
for handling the uncertain situations.

Aside from latency distribution, we also evaluate more
detailed performance with tail latency [16]. Figure 13 presents
the tail latency under different workload patterns. We separate
the mixed request stream into three independent streams
composed of three levels of Vr requests. To be specific,
we set the tail latency of FairSched as one and normalize
all other schemes. It is evident that simple schedulers are
almost similar, advanced schedulers are better, and v-MLP
performs the best. For the request stream with low Vr, the
gap between the five schemes is small since requests of low
Vr are easier to schedule and the strategies of v-MLP for
them are trivial. However, v-MLP outperforms much more
for the request streams with mid and high Vr, where v-MLP
adopts the maximum time slack and self-healing methods. It
shows that v-MLP is better at managing requests in a dynamic
datacenter environment rather than a static cluster.

Lastly, we evaluated the throughput improvement of v-

0

0.2

0.4

0.6

0.8

1

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

L1 L2 L3

N
o

rm
a

liz
e

d
 T

a
il

L
a
te

n
c
y

High Schedulability Requests Mid Schedulability Requests Low Schedulability Requests

0

0.2

0.4

0.6

0.8

1

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

L1 L2 L3

N
o

rm
a

liz
e

d
 T

a
il

L
a

te
n

c
y

High-Sched Requests Mod-Sched Requests Low-Sched Requests

0

0.2

0.4

0.6

0.8

1

Low Mid High Low Mid High Low Mid HIgh

Pulse-like Load Fluctuated Load Periodic Load

N
o

rm
a

liz
e

d
 T

a
il

L
a
te

n
c
y

FairSched CurSched PartProfile FullProfile v-MLP

Fig. 13. Performance: comparison of normalized tail latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H:M:L
1:1:1

H:M:L
1:1:2

H:M:L
1:1:1

H:M:L
1:1:2

H:M:L
1:1:1

H:M:L
1:1:2

L1 L2 L3

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

S1 S2 S3 S4 MLP (Ours)

0

0.2

0.4

0.6

0.8

1

H:M:L=1:1:1 H:M:L=2:1:1 H:M:L=1:1:1 H:M:L=2:1:1 H:M:L=1:1:1 H:M:L=2:1:1

Pulse-like Load Fluctuated Load Periodic Load
N

o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

FairSched CurSched PartProfile FullProfile v-MLP

Fig. 14. Performance: comparison of normalized throughput

MLP. The throughput is calculated as the number of finished
requests within certain scheduling period (100s). We normalize
the results of other schemes with v-MLP. We evaluate the
throughput under different types of request streams by adjust-
ing the ratio of high Vr requests. As shown in Figure 14, v-
MLP greatly outperforms the other schemes, especially with a
higher ratio of high Vr requests due to their tailed management
strategies. Also, v-MLP performs better under fluctuating
workload since the self-healing module enables fairly accurate
aligned execution in a highly dynamic environment.

VI. RELATED WORK

A. Resource Management in Datacenter

In the last decades, there are many works on datacenter
resource management [9], [25], [29], [30], [32], [39], [44].
For example, at the infrastructure level, researchers propose to
coordinate power supply management and computing system
management to achieve high sustainability and high avail-
ability [18], [28]–[32]. At the system level, there are many
papers on mitigating resource contention [12], [34], [40] and
improving server utilization [8], [11], [36], [41]. Nevertheless,
these works do not take into account the unique behaviors of
microservices and serverless functions.

B. System Research on Microservices

The microservice architecture is proposed to solve sev-
eral problems of deploying monolithic applications in data
centers [6], [24], [33], [43]. Consequently, microservices are
becoming an important type of data center workload [13], [46].
Several proposals have focused on improving the performance

or efficiency of microservices. For example, Yu et al. focused
on predicting QoS violations among massive microservices
[14]. Kannan et al. use time estimation to guarantee SLAs
for jobs in microservice execution frameworks [26] without
considering resource management. Sriraman et al. discussed
optimization approaches for microsecond-scale services [37].
Chou et al. investigated dynamic power management for
microsecond-scale services. Hou et al. conducted a series of
researches on power-aware microservice workload manage-
ment. [19]–[21]. To our knowledge, very limited work has
been done in terms of managing parallel microservice chains
towards higher resource efficiency.

C. Exploration of Parallelism

In the past, parallelism on various granularity has been
examined in depth [15], [23], [35]. Parallelism is widely used
to solve computing problems in complex conditions. There are
several representative forms of parallelism: instruction level
parallelism (ILP), thread level parallelism (TLP), and request
level parallelism (RLP). ILP is proposed earliest and serves at
the lowest level [38]. TLP looks at instruction streams across
multiple processors in parallel computing environments [7].
Meanwhile, RLP refers to concurrent processing of multiple
requests in the datacenters [6]. Nevertheless, very few works
have considered exploiting parallelism at the microservice
granularity in datacenters. In this work we show that it is
rewarding to fine-tune the microservice chain in a highly
heterogeneous and dynamic execution environment.

VII. CONCLUSION

The microservice architecture is redefining the cloud en-
vironment today and drives scalable and agile application
deployment. In this paper, we show that conventional parallel
processing solutions are sub-optimal as they neither cap-
ture the unique characteristics of microservices nor consider
the uncertainty arises in the microservice environment. We
propose Microservice Level Parallelism (MLP), a new form
of parallelism that aims to improve system efficiency by
coordinating microservice chains invoked by various requests.
We develop a solution to analyze and tackle the uncertainty
issue in a highly dynamic microservice environment. We show
that our design can yield lower end-to-end latency and higher
resource utilization and throughput while keeping lower QoS
violations. We expect that this work will provide valuable
insights for both academic and practitioners in the design of
the next-generation cloud-native infrastructure.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (No.61832006) and Shanghai
S&T Committee Rising-Star Program (No.21QA1404400). We
thank all the anonymous reviewers for their valuable feedback.
Corresponding author is Chao Li.

REFERENCES

[1] “Jaeger,” https://jaegertracing.io, 2021.
[2] “Zipkin,” https://zipkin.io/, 2021.
[3] “Alibaba cluster data,” https://github.com/alibaba/clusterdata, 2021.
[4] “Container advisor,” https://github.com/google/cadvisor, 2021.
[5] “Prometheus,” https://prometheus.io/, 2021.
[6] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:

An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[7] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolution of
thread-level parallelism in desktop applications,” in Proceedings of the
37th annual international symposium on Computer architecture, 2010,
pp. 302–313.

[8] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma,
Y. Yang, and M. Guo, “Alita: comprehensive performance isolation
through bias resource management for public clouds,” in SC20: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–13.

[9] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[10] W. Cui, H. Zhao, Q. Chen, N. Zheng, J. Leng, J. Zhao, Z. Song,
T. Ma, Y. Yang, C. Li et al., “Enable simultaneous dnn services based
on deterministic operator overlap and precise latency prediction,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–15.

[11] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp.
77–88, 2013.

[12] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating
interference at microsecond timescales,” in 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20), 2020,
pp. 281–297.

[13] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3–18.

[14] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the twenty-fourth international conference on architectural support for
programming languages and operating systems, 2019, pp. 19–33.

[15] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” ACM SIGPLAN
Notices, vol. 41, no. 11, pp. 151–162, 2006.

[16] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini, and
K. S. McKinley, “Few-to-many: Incremental parallelism for reducing
tail latency in interactive services,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 161–175, 2015.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011,
pp. 22–22.

[18] X. Hou, L. Hao, C. Li, Q. Chen, W. Zheng, and M. Guo, “Power grab in
aggressively provisioned data centers: What is the risk and what can be
done about it,” in Proceedings of the 36th IEEE International Conference
on Computer Design (ICCD), 2018.

[19] X. Hou, C. Li, J. Liu, L. Zhang, Y. Hu, and M. Guo, “Ant-man: towards
agile power management in the microservice era,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020, pp. 1–14.

[20] X. Hou, C. Li, J. Liu, L. Zhang, S. Ren, J. Leng, Q. Chen, and
M. Guo, “Alphar: learning-powered resource management for irregular,
dynamic microservice graph,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 797–806.

[21] X. Hou, J. Liu, C. Li, and M. Guo, “Unleashing the scalability potential
of power-constrained data center in the microservice era,” in Proceedings
of the 48th International Conference on Parallel Processing, 2019, pp.
1–10.

[22] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, 2009, pp. 261–276.

[23] N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism for
superscalar and superpipelined machines,” ACM SIGARCH Computer
Architecture News, vol. 17, no. 2, pp. 272–282, 1989.

[24] G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha,
A. Gupta, M. Tarta, M. Fussell, V. Modi et al., “Service fabric:
a distributed platform for building microservices in the cloud,” in
Proceedings of the thirteenth EuroSys conference, 2018, pp. 1–15.

[25] R. S. Kannan, A. Jain, M. A. Laurenzano, L. Tang, and J. Mars, “Proctor:
Detecting and investigating interference in shared datacenters,” in 2018
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2018, pp. 76–86.

[26] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, 2019, pp. 1–16.

[27] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
efficient and fast rpcs in cloud microservices with near-memory reconfig-
urable nics,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 36–51.

[28] C. Li, Y. Hu, L. Liu, J. Gu, M. Song, X. Liang, J. Yuan, and T. Li,
“Towards sustainable in-situ server systems in the big data era,” Acm
Sigarch Computer Architecture News, vol. 43, no. 3S, pp. 14–26, 2015.

[29] C. Li, Y. Hu, R. Zhou, M. Liu, L. Liu, J. Yuan, and T. Li, “Enabling
datacenter servers to scale out economically and sustainably,” in Pro-
ceedings of the 46th annual IEEE/ACM international symposium on
microarchitecture, 2013, pp. 322–333.

[30] C. Li, A. Qouneh, and T. Li, “iswitch: Coordinating and optimizing
renewable energy powered server clusters,” ACM SIGARCH Computer
Architecture News, vol. 40, no. 3, pp. 512–523, 2012.

[31] C. Li, Z. Wang, X. Hou, H. Chen, X. Liang, and M. Guo, “Power
attack defense: Securing battery-backed data centers,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 493–505, 2016.

[32] C. Li, R. Zhou, and T. Li, “Enabling distributed generation powered
sustainable high-performance data center,” in 2013 IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2013, pp. 35–46.

[33] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He,
and C. Xu, “Characterizing microservice dependency and performance:
Alibaba trace analysis,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 412–426.

[34] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th annual IEEE/ACM
International Symposium on Microarchitecture, 2011, pp. 248–259.

[35] S. Rul, H. Vandierendonck, and K. De Bosschere, “Function level
parallelism driven by data dependencies,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 1, pp. 55–62, 2007.

[36] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Sys-
tems, 2013, pp. 351–364.

[37] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for
{OLDI} microservices,” in 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), 2018, pp. 177–194.

[38] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings
of the fourth international conference on Architectural support for
programming languages and operating systems, 1991, pp. 176–188.

[39] J. Wang, C. Li, T. Wang, l. Zhang, P. Wang, J. Mei, and M. Guo,
“Excavating the potential of graph workload on rdma-based far memory
architecture,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2022.

[40] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 607–
618, 2013.

[41] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, 2017, pp.
133–146.

[42] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng, J. Xu,
and C. Li, “Performance-aware speculative resource oversubscription
for large-scale clusters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 7, pp. 1499–1517, 2020.

[43] R. Zeng, X. Hou, L. Zhang, C. Li, W. Zheng, and M. Guo, “Performance
optimization for cloud computing systems in the microservice era: state-
of-the-art and research opportunities,” Frontiers of Computer Science,
vol. 16, no. 6, pp. 1–13, 2022.

[44] L. Zhang, W. Feng, C. Li, X. Hou, P. Wang, J. Wang, and M. Guo,
“Tapping into nfv environment for opportunistic serverless edge function
deployment,” IEEE Transactions on Computers, 2021.

[45] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: Ml-
based and qos-aware resource management for cloud microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
167–181.

[46] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Poster:
Benchmarking microservice systems for software engineering research,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering: Companion (ICSE-Companion). IEEE, 2018, pp. 323–324.

