
FIRST: Exploiting the Multi-Dimensional Attributes
of Functions for Power-Aware Serverless Computing

Lu Zhang1, Chao Li1, Xinkai Wang1, Weiqi Feng1, Zheng Yu1, Quan Chen1, Jingwen Leng1, Minyi Guo1,
Pu Yang2, Shang Yue2

1Department of Computer Science and Engineering, Shanghai Jiao Tong University 2Tencent
Emails: {luzhang, unbreakablewxk}@sjtu.edu.cn, {lichao, chen-quan, guo-my}@cs.sjtu.edu.cn , {dowpuyang}@tencent.com

Abstract—Emerging cloud-native development models raise
new challenges for managing server performance and power
at microsecond scale. Compared with traditional cloud work-
loads, serverless functions exhibit unprecedented heterogeneity,
variability, and dynamicity. Designing cloud-native power man-
agement schemes for serverless functions requires significant
engineering effort. Current solutions remain sub-optimal since
their orchestration process is often one-sided, lacking a systematic
view. A key obstacle to truly efficient function deployment is
the fundamental wide abstraction gap between the upper-layer
request scheduling and the low-level hardware execution.

In this work, we show that the optimal operating point (OOP)
for energy efficiency cannot be attained without synthesizing the
multi-dimensional attributes of functions. We present FIRST,
a novel mechanism that enables servers to better orchestrate
serverless functions. The key feature of FIRST is that it leverages
a lightweight Internal Representation and meta-Scheduling (IRS)
layer for collecting the maximum potential revenue from the
servers. Specifically, FIRST follows a pipeline-style workflow. Its
frontend components aim to analyze functions from different
angles and expose their key features to the system. Meanwhile,
its backend components are able to make informed function
assignment decisions to avoid OOP divergence. We further
demonstrate the way to create extensions based on FIRST to
enable versatile cloud-native power management. In total, our
design constitutes a flexible management layer that supports
power-aware function deployment. We show that FIRST could
allow 94% functions to be processed under the OOP, which brings
up to 24% energy efficiency improvements.

Index Terms—FaaS, power management, multicore

I. INTRODUCTION

We have entered a new era in which serverless computing
(or Function as a Service, FaaS) is redefining the cloud [14],
[28], [32]. A serverless function is a bundle of code that can be
invoked through the Internet. To achieve higher server utiliza-
tion and make the serverless model profitable, cloud vendors
often colocate functions [1], [32]. To make the serverless
model more cost-effective, the underlying cloud servers should
be carefully managed for greater energy efficiency [24], [33],
[38]. Further, green consciousness is quickly making its way
into the cloud. IT companies now have strong incentives to
limit system power to improve sustainability.

Till now, very limited prior work exists on the power-
efficient deployment of a variety of serverless functions. The
lightweight nature of serverless computing allows multiple
functions that are drastically different to be running on a
single processor core [23], [40]. In this case, providing the

docker
initialize

import
code

code
initialize

code
process

import run
arguments

docker
pause

Initialization Execution

0
0.2
0.4
0.6
0.8

1

ch
aos

de
lta

blue

fann
ku

ch flo
at go

du
mps

loa
ds
nb

od
y

ray
tra

ce

un
pa

ck

oc
r-i

mg

im
g-re

siz
e

se
ntim

en
t
Avg

.

R
at

io

Initialization Time Execution Time

0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3

1.1 1.3 1.5 1.7 1.9 2.1 2.3Be
st

-s
ui

te
d

Fr
eq

ue
nc

y
of

 E
xe

c.
 P

ha
se

 (G
H

z)

Best-suited Frequency of Init. Phase (GHz)

Best-suited Freq. of Exec. Phase
= Best-suited Freq. of Init. Phase

Different Languages Different Resource Occupation

λ

(b) Gather+ Mode

InvocationCOR CCF

Runtime

100%

0

(a) Prepare+ Mode

100%

0
Runtime

Ra
te

Ra
te

Runtime

100%

0

(a) Map+ Mode
Runtime

100%

0

(b) Tune+ Mode

InvocationCOR CCF

Ra
te

Ra
te

Fig. 1. Variety of functions’ best-suited frequency

most desirable configuration for every single function requires
µs-scale power adjustment to fit users’ fleeting requests.
With current performance/power scaling speed, it is still an
impossible mission [11] under massive diversified functions.

Importantly, our characterization (detailed in II-A) reveals
that the power behavior of serverless functions is affected by
multiple attributes. 1) Function Lifecycle: functions quickly
goes through several major phases in its lifecycle [4], [29].
Each phase has different behavior which requires special
care when managing the power. 2) Runtime Environment:
Serverless platforms allow developers to write their FaaS code
in different languages [28], [32]. A function’s sensitivity to
performance scaling can be language-specific. 3) Resource
Occupation: functions demand different types of resources.
Each function has a different best-suited frequency. Blindly
scheduling functions may disrupt the established operating
states and cause inefficient frequency adjustments. In Figure 1,
our evaluation of over a dozen realistic functions demonstrates
a highly diversified workload portfolio. Each function demands
a different frequency which changes with its lifecycle phase.

In this work we argue that FaaS platforms need to consider
multiple key attributes and make informed power management
decisions – a process we refer to as function attribute synthesis.
Through attribute synthesis, we aim to identify the optimal
operating point (OOP) of the FaaS platform. Traditional re-
quest scheduling and micro-architectural dynamic scheduling
both abstract away the abundant attributes of functions. There
is a wide abstraction gap between the upper-layer software
application and the low-level hardware execution. As a result,
existing power management policies are oblivious to function
attributes and they unavoidably lead to a situation in which
co-located functions have drastically diverged OOP. Thus, the

docker
initialize

import
code

code
initialize

code
process

import run
arguments

docker
pause

Initialization Execution

(a) The phases of functions

docker
initialize

import
code

code
initialize

code
process

import run
arguments

docker
pause

Initialization Execution

0
0.2
0.4
0.6
0.8

1

ch
aos

de
lta

blue

fann
ku

ch flo
at go

du
mps

loa
ds
nb

od
y

ray
tra

ce

un
pa

ck

oc
r-i

mg

im
g-re

siz
e

se
ntim

en
t
Avg

.

R
at

io

Initialization Time Execution Time

0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3

1.1 1.3 1.5 1.7 1.9 2.1 2.3Be
st

-s
ui

te
d

Fr
eq

ue
nc

y
of

 E
xe

c.
 P

ha
se

 (G
H

z)

Best-suited Frequency of Init. Phase (GHz)

Best-suited Freq. of Exec. Phase
= Best-suited Freq. of Init. Phase

Different Languages Different Resource Occupation

λ

(b) Gather+ Mode

InvocationCOR CCF

Runtime

100%

0

(a) Prepare+ Mode

100%

0
Runtime

Ra
te

Ra
te

Runtime

100%

0

(a) Map+ Mode
Runtime

100%

0

(b) Tune+ Mode

InvocationCOR CCF

Ra
te

Ra
te

(b) Duration breakdown of functions

Fig. 2. Different phases of serverless functions

0.54

(a) Initialization phase (b) Execution phase

Fig. 3. Language type affects latency differently

state-of-the-art designs may achieve high server utilization
(function density) but never the best energy efficiency, espe-
cially in the power budget environment.

This paper takes the first step to empower the FaaS platform
to support power-aware function scheduling on processor
cores. We propose to reduce the wide abstraction gap with
a lightweight management layer. Our novelty is two-fold.
First, we create function internal representations enriched with
multi-dimensional attributes from the code runtime, OS, and
hardware architecture. Second, we introduce function meta-
scheduling, which aims to fine-tune the allocation process at
the server level through an efficient pipeline-style workflow.

We present Function Internal Representation and meta-
Scheduling Toolset (FIRST) for power-aware function deploy-
ment. It includes a mini set of operators that play different
roles. Specifically, FIRST employs two front-end operators for
function analysis and two back-end operators for workload
control. Its pipeline-style workflow allows one to perform
function orchestration in power-efficient ways. This paper
makes the following contributions:

• Analysis: We analyze the performance-power implica-
tions of serverless functions and demonstrate the rationale
for maintaining a converged optimal operating point.

• Design: We introduce FIRST, a novel mechanism for
fine-tuning the function placement process with a ver-
satile, pipeline-like working flow. We further enhance it
to support more flexible function power management.

• Evaluation: We build a proof-of-concept testbench of
FIRST and show that it could improve energy efficiency
by more than 24% with minor performance overhead.

The rest of this paper is organized as follows: Section
II further motives our work. Section III proposes FIRST.
Section IV describes experimental methodologies. Section V
presents evaluation results. Section VI analyzes FIRST on
real machines. Finally, Section VII discusses related work and
Section VIII concludes the paper.

II. ABSTRACTION GAP: IMPLICATIONS

We start by analyzing multiple attributes unexploited in
function power management due to the abstraction gap. We
then show that it is infeasible to reach a desirable operating
point without coordinated orchestration.

A. Multi-Dimensional Attributes
We analyze the power behavior of representative serverless

functions (detailed in Table II) from different perspectives.
1) Function Phase Matters: Although a serverless function

can be deployed in various ways [1], [8], [14], [32], [37],
its invocation often consists of multiple phases as shown
in Figure 2(a). Among all the phases, the initialization and
execution are the most important. Figure 2(b) shows the
latency breakdown of a set of functions. We can see that the
initialization time is generally comparable to the execution
time, accounting for over half of the total latency across our
evaluated benchmarks. The two phases have different process-
ing flows and characteristics. During initialization, containers
import codes with libraries and initialize them using language-
specific interpreters. In contrast, the execution of functions
mainly processes user code, which emphasizes different types
of resource occupation. As detailed below (Figures 3 and
4), one needs to treat the initialization and execution
phases differently when managing the energy of serverless
functions.

2) Language Runtime Matters: Developers generally send
functions written in a variety of high-level programming lan-
guages [7], [8], [32] to the serverless platform. To understand
the influence of the runtime environment on power man-
agement, we implement ALU (a compute-intensive function)
using different languages: Go, PHP, Swift, and Ruby. We
record the time of function initialization and execution under
different frequencies. We observe different performance trends
in response to processor frequency adjustment. For example, in
Figure 3(a), the latency of Ruby function drops significantly
when the frequency changes from 1.0GHz to 2.2GHz. The
latency of Go function does not change that much as the
frequency increases. For a given QoS (e.g., 0.54x latency in the
figure), the four ALU functions manifest different requirements
on the minimum frequency. If we look at the execution time,
however, the performance trends are very similar across all the
evaluated languages, as shown in Figure 3(b). It is evident that
a function’s performance-power behaviors are language-
specific in the initialization phase while influenced less by
language type in the execution phase.

3) Resource Type Matters: A serverless platform usually
hosts a variety of functions that could be invoked at any time.
The resource type (e.g., CPU-bound / IO-bound) [12], [16]
may affect functions’ power-performance behavior as well.
To see how the use of resources can impact system power
efficiency, we invoke two different functions: ALU (CPU-
bound) and FileIO (IO-bound). We measure the time spent
on the initialization and execution phase, respectively.

The resource type can affect functions’ power-performance
behavior in a way directly opposite to the language runtime.

(a) Initialization phase (b) Execution phase

Fig. 4. Resource type affects latency differently

Figure 4(a) plots the normalized initialization time of two
functions under different processor frequencies. We observe
that it is the initialization time that keeps the same tendency
as frequency increases for both function types. When it comes
to execution time, as shown in Figure 4(b), the two functions
differ greatly. Although both functions slope downward from
left to right, the latency change of FileIO is much lower
than ALU. The above results show that resource type has
negligible influence during function initialization, but it
dominates when a function is executing.

Summary: Serverless computing presents a highly hetero-
geneous and dynamic environment. The power behavior of
functions is affected by multi-dimensional attributes including
resource types, function phases, language runtime, etc. Effi-
ciently reining cloud-native applications can be a daunting task
without grasping the underlying multi-dimensional attributes.

B. Optimal Operating Point Divergence
As mentioned, functions’ optimal operating points (OOPs),

which provides the energy efficiency, are different with differ-
ent attributes. We observe that a CPU core can be assigned
with a group of functions that have drastically different OOPs,
which we call OOP divergence of functions. This phenomenon
makes it difficult or impossible for a core to find an optimal
V/F setting. CPU time-multiplexing does not solve this issue
since existing hardware cannot quickly adjust its power states
facing massive diversified applications [21].

In Figure 5 we compare OOP divergence and convergence.
The ideal function co-location strategy needs to synthesize the
multi-dimensional attributes to group functions whose OOPs
are the same. This will lead to OOP convergence, which
prevents the system from making compromised frequency
scaling decisions on a processor core.

To quantitatively measure the OOP divergence of the sys-
tem, we define a simple metric, Function Chaos Factor (FCF):

FCF =
1

N

NX

i

↵i

vuut 1

M

MX

j

(xij � x̄i)2 (1)

In the above equation, N is the dimension of information that
we extract and ↵i is the weight of dimension i contributed
to FCF. M is the number of functions running and xij is
the value of function j on the dimension i. The metric can
be used to identify and quantify the OOP divergence of the
system. It is basically a measure of the diversity/disorder of
functions based on multiple indices (0 FCF 1, 0 indicates

Program
Language

Running
State

Resource
Type

Equipment

…

Multi-Dimensional Attributes

OOP =
f(d1,d2,…)

d2

d3

d2

d3

d2

d3

d2

d3

d2

d3

d2

d3

…

…

Function Allocation
OOP diverges on each core

OOP converges on each core
OOP

OOP

Fig. 5. Optimal operating point (OOP) divergence

Fig. 6. Normalized EDP of differ-
ent function deployment scenarios

Fig. 7. Impact of co-locating func-
tions with the same resource type

the orderly function execution while 1 indicates the irregular
function execution).

To illustrate how diversity/disorder affects the efficiency
of a system, we conduct a case study as shown in Figure
6. We use energy-delay product (EDP) to present energy
efficiency, which offers equal weight to both energy and
performance. Each function has its best-suited frequency in
each dimension: language, architecture, and phase. Take the
language dimension as an example, we run heterogeneous
functions in two ways. 1) With similarity: we run two Go
functions on one core, and two Ruby functions on another.
We configure each core with a single best-suited frequency. 2)
Without similarity: each core runs a set of functions written in
different languages and different functions may have different
OOPs. As shown in Figure 6, due to OOP divergence, the
overall processor EDP increases by 10%-38%. It is evident
that orderly grouped functions have the best efficiency.

Note that resource contention can be a minor issue with
mild co-location on a core. Figure 7 shows the impact of
function co-location. Our baseline scheme co-locates functions
of different resource type (50% CPU-intensive and 50% IO-
intensive) on a core. We show the performance of co-locating
functions of the same resource type, which is normalized
to the performance of that resource type in our baseline
scheme. For example, in the figure, co-locating 8 IO-intensive
functions result in 25% latency increase compared to the
average latency of IO-intensive functions in our baseline (4
IO-intensive + 4 CPU-intensive). For CPU-intensive functions,
co-location introduces negligible performance difference even
if we increase the co-location density to 8 functions per core.
Differently, IO-intensive functions are more sensitive in this
regard. To avoid severe contention, in this work we limit co-
location density to 4 functions per core.

Summary: Without a deep understanding of the massive
diversified functions, it is difficult to make the best power
allocation decision. It is better to avoid OOP divergence

Functions

Container Orchestrator

FIRST

Dynamic Scheduling

Request Scheduling

Operating System

Internal
Representation
& Scheduling

Push %ebx
Mov %eax, [%esp+8]
Mov %ebx, [%ebx+12]
Add %eax, %ebx
Pop %ebx

Pr
eF
ilt
er

Fi
lte
r

Pr
eS
co
re

Sc
or
e

No
rS
co
re

Re
se
rv
e

Pe
rm
it

Prepare Gather

Apply Tune

Hardware Off-chip VR

core
VR

core
VR

core
VR

core
VR

core
VR

core
VR

Existing Path
Proposed Path

Higher
Layer

Lower
Layer

Chaos Ordered

Abstraction
Gap

Fig. 8. An overview of FIRST

and ensure orderly function assignment. Smart function re-
distribution based on function attribute synthesis demonstrates
remarkable efficiency and limited resource contention.

III. POWER-AWARE FUNCTION PROCESSING

We present Function Internal Representation and meta-
Scheduling Toolset (FIRST), a novel processor power man-
agement scheme for serverless functions.

A. Overview of FIRST

In Figure 8 we provide an overview of FIRST. The proposed
FIRST design has three salient features:

• Function Internal Representation. FIRST constructs a
new abstraction layer in-between the upper function or-
chestration layer and the low-level hardware execution
layer. In the new layer, function internal representation is
created as an extended ID with enriched information of
the original serverless function. It encapsulates key con-
figurations and/or parameters of functions, which makes
attribute synthesis possible. Function internal representa-
tion is the foundation of FIRST and it allows one to tap
into the multi-dimensional attributes of functions that are
largely overlooked by conventional designs.

• Meta-Scheduling: On top of the internal representation,
FIRST provides a pipeline-style workflow that can ma-
nipulate function distribution. It is composed of a mini set
of four operators: Prepare, Gather, Map, Tune. They
can be classified as either front-end analytic modules
or back-end control modules. We call the above pro-
cess ”meta-scheduling” since it goes beyond traditional
scheduling and it seeks to fine-tune the orchestration
process of functions. It fills a critical void between the
macroscopic request scheduling (for utilization) and the
microscopic instruction scheduling (for performance).

• OOP Convergence: Our goal is to maintain the greatest
efficiency for the greatest number of functions. We choose
a utilitarian approach to function meta-scheduling. As
mentioned before, the OOP can be determined by an-
alyzing the attributes of a function and functions may
have different OOPs. The core can best serve its guest
functions only if they have converged OOP. Maintaining
OOP convergence improves efficiency and stability.

B. The IRS Workflow
FIRST is composed of a mini set of four operators. They

can be classified as either front-end analytic modules or
back-end control modules, as shown in Figure 9. The front-
end operators (Prepare and Gather) are responsible for
information gathering and analysis. The back-end operators
(Map and Tune) are responsible for controlling the execution
of the thread running on the servers.

1) Prepare: The Prepare operator extracts the key
information of functions and transforms the data into a tri-
tuple. As shown in Figure 9(a), it spans the major stack of
the computing system. We mainly assess functions from three
dimensions – the hardware, the OS, and the source code.

At the code level, Prepare extracts a language index
(L) by analyzing container image information when functions
are invoked. This information keeps unchanged throughout
the functions’ lifespan. Meanwhile, it periodically detects the
current status (P) of the function by interacting with the
OS. We insert tags into function runtime libraries to capture
important phases and Prepare creates a phase index P
by analyzing the container log data. Unlike L, P is not a
constant. At the hardware level, Prepare reads low-level
performance counters that are available. It determines an
architecture index (A) which reflects the resource type that
a function depends on. Finally, Prepare is able to generate
a internal representation hA,P,Li for the input function.

2) Gather: The Gather operator is responsible for iden-
tifying the best resource sharing schemes based on the internal
representation offered by Prepare. By carefully co-locating
functions, we can prevent OOP divergence on a processor core.

The Gather operator is performed in a unique two-step
manner. This is because the power behavior of a function
changes in its lifecycle (detailed in Section II). We firstly
gather functions by P , which results in two groups: 1)
functions in the initialization phase, and 2) functions in the
execution phase. In the second step, we further break each
group into several subsets. For functions in the initialization
phase (L-sensitive), we classify them based on the code
runtime. For functions in the execution phase (A-sensitive),
we classify them based on resource consumption behavior.

3) Map: The Map operator maps function subsets to cores.
The basic principle behind this is that newly added functions
should have the minimum impact on the current state of
the hardware. We want to keep the processor running in a
relatively stable manner. Figure 9(c) illustrates the mechanism
behind Map. The operator basically manages the function-
core affinity hierarchically. Given the function groups created
by Gather, Map divides all the available cores into three
categories – Init. Phase Core, Exec. Phase Core and Mixed
Core. The Init. Phase Core hosts functions that are initializing;
we bind functions of the same L to them. Similarly, functions
running on the Exec. Phase Core are all in their execution
phase; we bind functions of similar A to these cores.

It is possible that some cores may have to host functions
with little similarity. We use Mixed Core to refer to them.
There are three types of Mixed Core – Mixed Init. Core, Mixed

𝐹1 𝐹2 ⋯ 𝐹𝑛
Code

Hardware

OS Prepare

(a) The flow of the operator Prepare (b) The flow of the operator Gather

Init. Phase Core Exec. Phase CoreMixed Core

Mixed Init. Core (ℒ𝑥ℒ𝑧 ⋯) Mixed Exec. Core (𝑥𝑦⋯)Init-Exec Mixed (ℒ𝑥𝑦⋯)
(c) The flow of the operator Map

𝑭

(d) The flow of the operator Tune

Attribute-
Frequency Table

Fr
on
t-E
nd

O
pe
ra
to
r

B
ac
k-
En
d

O
pe
ra
to
r

Lang. Index ()

Phase Index ()

Arch. Index ()

𝐹1 ⟨𝐹1,𝐹1,𝐹1⟩
𝐹2 ⟨𝐹2,𝐹2,𝐹2⟩

⋯
𝐹𝑛 ⟨𝐹𝑛,𝐹𝑛,𝐹𝑛⟩

Attributes

Gather𝑭 ⟨,, ⟩

Function Subsets

 -Sensitive

-Sensitive

{𝐹|𝐹 = 1}
{𝐹|𝐹 = 2}
{𝐹|𝐹 = 𝑛}

⋯

{𝐹|𝐹 = 1}
{𝐹|𝐹 = 2}
{𝐹|𝐹 = 𝑛}

⋯

Function Subsets

ℒ1 ℒ2 ℒ𝑛⋯ 1 2 ⋯ 𝑛

Init. Phase Core Mixed Core Exec. Phase Core

𝑭 𝑭 𝑭 𝑭 𝑭 𝑭 𝑭 𝑭

Highest freq.

Lowest freq.

Core
status

Map

Tune

Fig. 9. Key resource management operators defined by FIRST. It carefully maps function sets to processor cores

Exec. Core and Init-Exec. Core. Here, Mixed Init. Cores host
functions with different L index but all in the initialization
phase. Mixed Exec. Cores host functions with different A
index but all in the execution phase. In the worst case, we
co-locate functions of different phases (i.e., Init-Exec. Core)
which often exhibits the least efficiency.

4) Tune: Finally, the Tune operator determines appropri-
ate power levels for each CPU, as shown in Figure 9(d). For
the Init. Phase Core and Exec. Phase Core, we directly set
the OOP which ensures the highest efficiency.

For the Mixed Core, Tune determines the frequency of each
core according to an Attribute-Frequency Table, which calcu-
lates an efficiency score for each attribute-frequency pair. The
score is based on system profiling data. As shown in Figure 10,
a function with specific attributes is scored at each frequency
level. As an example, the figure shows four functions with
an optimal frequency setting of {1,3,5,4}, respectively. The
simplest way is to use the minimum, maximal or average value
of the optimal frequency of the functions on the Mixed Core.
On the right side of Figure 10, we can see the overall efficiency
score of the three ways are 3.1, 3.1, 2.9 respectively. In this
example, the optimal frequency setting should be 2 which
brings the efficiency score to 3.4. For each Mixed Core, we
adopt the frequency that provides the highest efficiency score.

C. Implementation and Optimization

Figure 11 depicts the overall system architecture. As func-
tions arrive at a server node, they will be examined and
fine-tuned by the IRS layer. Specifically, each server man-
ages a local meta-scheduling pipeline for the incoming func-
tions. It captures hA,P,Li information through the operator
Prepare. Afterwards, the operator Gather takes hA,P,Li
as the input to form a number of sorted function subsets. By
default, each subset will be assigned to the same core with
the Map operator which oversees the degree of disorder of the
multi-core. Map uses a Core Label Table to associate function
IDs in the function subset with different cores. Lastly, the
Tune operator assigns functions to the specified core using
cgroups and adjusts core frequency through DVFS.

During runtime, FIRST uses two metrics to track and assess
the system status and optimization effectiveness: 1) core chaos
factor (CCF), and 2) core occupation rate (COR).

CCF =
Cmixed

Cactive

, COR =
Cactive

Ctotal

(2)

In the above equation, Cmixed and Cactive are the number
of Mixed Cores and active cores, respectively; Ctotal is the
number of cores. CCF measures the disorder degree of func-
tion assignment and COR reflects general system utilization.
Both metrics are easy to calculate. The core status module
shown in Figure 9(d) contains CCF and COR information.

Efficient meta-scheduling can be tricky in a highly dynamic
FaaS environment. For example, consolidating functions saves
power, but it can also lead to more Mixed Cores which has
low performance-per-watt due to OOP divergence of functions.
Therefore, it is often necessary to make subtle yet non-trivial
enhancements to the meta-scheduling pipeline.

1) Front-End Enhancement: We define additional modes
for Prepare/Gather to enable more flexible processing.
Prepare+: With the plus sign, we mean to provide a

new Tidal-Lane Mode for the prepare operation. In its default
settings, FIRST allows one to analyze a fixed amount of
functions through Prepare. When the incoming traffic grows
or the current running functions reduce quickly, it is preferable
to adjust the batch size for attribute synthesis. Prepare+ sup-
ports such reconfiguration. It also identifies latency-sensitive
functions based on either user inputs or history information.
As shown in Figure 12(a), the newly invoked functions will
not be assigned immediately if they have relaxed deadlines.
Gather+: We provide a new Fast-Lane Mode for the

gather operation. For functions that demand responsiveness,
we can launch them as quickly as possible by skipping a
few time-consuming operations. In this mode, the system
provides special treatment to functions that are marked as
latency-sensitive. As shown in Figure 12(b), once there is spare
space on the core, the selected function will be immediately
scheduled. Note that, in this mode, the number of Mixed Cores
will increase due to the insertion of a function of different
attributes. To minimize this side-effect, we need to select the
most suitable function for running in this mode.

2) Core State Analysis: In Figure 13, we compare the Tidal-
Lane mode and the Fast-Lane mode by further analyzing the
core occupation rate (COR) and core chaos factor (CCF).
We consider a processor overwhelmed by massive functions

Attr. ID Energy Efficiency (Perf./Watt)

1 5
3 4

3 3
3 3

1 1
1 1

5 5
5 5

Avg

3.1

3.1

2.9

E
fficiency
S

core

Attribute-Frequency Table

Mixed Core
Frequency Tuning

Func 1

Func 3
Func 2

Func 4

Mixed Cores
Fu

nc
tio

ns
 w

ith

A
ttr

ib
ut

es 1 0.9 0.7 0.6 0.4 0.2
0.6 0.8 1 0.7 0.8 0.6
0.7 0.8 0.7 0.8 1 0.8
0.8 0.9 0.7 1 0.7 0.9
1 2 3 4 5 6

1

3
2

4

Fig. 10. Frequency tuning of Mixed Cores

PrepareVRM

Core
VRM

Core
VRM

Core

VRM

Core
VRM

Core
VRM

Core

H
ar

dw
ar

e

Container Cgroup

Function
code

Function
code

FIRST

Performance
counters
DVFS mode
registers

Read counters

Languages

Lifecycle phase Gather

group by

group by

 = init.?
check

TuneCheck DVFS mode
Set DVFS

Prepare Gather
Tune Map

f ff ff
f ff ff

f f ff f

Function group

Core Label Table

Pipeline

Map

O
S

Ke
rn

el
A

pp
lic

at
io

n

Core status
recorder Check core status

Set core affinity

Interact with the system Interaction between operators

Fig. 11. Overview of the FIRST architecture implemented for a multi-core serverless computing platform

(a) Prepare+ (Tidal-Lane mode)

⋯F

F
F

F

⋯
F

F⋯

⋯F

F
F

F

(b) Gather+ (Fast-Lane mode)

idle cores active cores with OOPmixed coresvacancy

Fig. 12. Comparison of enhanced front-end operators

(b) Gather+ (Fast-Lane mode)

InvocationCOR CCF

(a) Prepare+ (Tidal-Lane mode)

100%

0
Runtime

R
at

e

Runtime

100%

0

R
at

e

Fig. 13. The core occupation rate and core chaos factor under enhanced
front-end operators: (a) Tidal-Lane mode; (b) Fast-Lane mode

idle cores active cores with OOPmixed coresvacancy
⋯F

F
F

F

F

(a) Map+ (Dyn mode) (b) Tune+ (Eco mode)

Fig. 14. Comparison of enhanced back-end operators

(a) Map+ (Dyn mode)
Runtime

100%

0

(b) Tune+ (Eco mode)

InvocationCOR CCF

Runtime

100%

0
R

at
e

R
at

e

Fig. 15. The core occupation rate and core chaos factor under enhanced
back-end operators: (a) Dyn mode; (b) Eco mode

(e.g., non-empty function queue). With the Tidal-Lane Mode,
it becomes easier to maintain a small number of Mixed Cores.
Its COR declines as the number of idle cores grow during
runtime. If the system invokes new functions in bulk, all of
the idle cores will be occupied by new function sets which
bring COR back to 100%. In addition, it reduces Mixed Cores
at the beginning of each invocation, thereby bringing down
CCF periodically. Since the Fast-Lane mode invokes new
functions whenever possible, its COR is very close to 100%.
It also exhibits a monotonously increasing CCF curve. This
is because the status of each core changes as the phase of
functions moves forward. If any of the functions changes its
phase, the associated core may become a Mixed Core.

3) Back-End Enhancement: Our back-end extension can to
provide a better trade-off between OOP and power saving.
Map+: With Map+, we aim to dynamically re-map function

during runtime (i.e. Dyn Mode). When functions finish, they
create a temporary vacancy or even make a core idle. With
Map+, one can dynamically optimize core status. As shown in
Figure 14(a), during each control period, we identify the state-
changed functions and move them to the appropriate cores.
Our goal is to improve the OOP rate, which is defined as the
percentage of time a processor core is running under OOP
over a certain period. After migration, one may need to adjust
the core frequency based on the Attribute-Frequency Table.
Tune+: With Tune+, we intend to make better

performance-power trade-offs (i.e., Eco Mode). If the invoked
functions are few, there will be plenty of space on the server.

TABLE I
SUMMARY OF FIRST’S OPERATOR EXTENSION

Type Operator Description Parameters/Hints
Profile of languages&script
Profile of func. lifecyclePrepare
Profile of arch. attribute

-TL: Tidal-Lane modeFront
End

Gather Gather func. based on OOP -FL: Fast-Lane mode
Map Map func. to cores -Dyn: Dyn mode

Adjust the freq. of cores
Dynamically migrate func.

Back
End Tune

Adjust freq. of mixed cores
-Eco: Eco mode

In this case, consolidating functions and putting idle cores
to sleep is desirable. The Map+ only mildly moves function
around to minimize the number of Mixed Core. Differently,
Tune+ reduces the idle power consumption by creating more
Mixed Core through function consolidation, as shown in Figure
14(b). We will discuss this in the evaluation.

4) Core State Analysis: With enhanced Map, one may
achieve lower CCF, as Figure 15 shows. Due to function
motion, functions will be re-mapped to the appropriate cores
with similarities during runtime. This process lowers the core
chaos factor. In Figure 15(a), Map+ will disperse function to
idle cores if necessary, which contributes to OOP convergence.
Differently, Tune+ consolidates functions for maximizing idle
cores. Thus, as shown in Figure 15(b), the COR will be
monotonously decreased. However, to consolidate functions,
the system has to process functions with more Mixed Cores
which increases CCF monotonously.

TABLE II
EVALUATED FUNCTIONS

Function Description Runtime
markdown Renders the markdown text to HTML python
img-resize Resize images to icons nodejs
sentiment Sentiment analysis of text python
ocr-img Find text in images using OCR nodejs
autocomplete Autocomplete the string from a corpus nodejs
FileIO IO-intensive function go
ALU CPU-intensive function go/ruby/swift/php

TABLE III
THE EVALUATED FUNCTION POOLS

Function Pool Abbr. Functions
Homogeneous Pool HO Functions with

(FCF = 0) var(OOP)i&e = 0

Less Homogeneous Pool
(0 < FCF < 1)

HOI Functions with
var(OOP)i = 0, var(OOP)e > 0

HOE Functions with
var(OOP)i > 0, var(OOP)e = 0

Heterogeneous Pool HE All functions combined
(FCF = 1) var(OOP)i > 0, var(OOP)e > 0

D. Summary of Interface Extension

In general, FIRST is not a cloud-scale abstraction layer;
instead, it focuses on function re-distribution (i.e., meta-
scheduling) at the server level. FIRST uses four kernel opera-
tors to aid the efficient management of serverless functions on
each server node. These operators, if used and combined syn-
thetically, can achieve different resource management goals.

To support a graceful transition to IRS-based function
management, FIRST provides an independent interface for
each operator, as shown in Table I. In this case, each operator
can be used and extended separately. In keeping with common
practice, FIRST does not require significant modifications to
the underlying OS or hardware. With different parameters (en-
hancement), these versatile operators allow one to manipulate
function assignments in different ways. we expect that each
operator can be further customized for different purposes.

IV. EXPERIMENTAL METHODOLOGIES

We use trace-driven evaluation to thoroughly analyze the
very large design space of FIRST. We collect detailed function
execution data from real machines (a 20-core server, Intel
Xeon Silver 4114) with Ubuntu 16.04.5 LTS installed. The
processor supports per-core DVFS with frequencies from
0.8GHz to 2.2GHz at the interval of 0.1GHz. The default
driver is ACPI with the ”ondemand” governor. We record dy-
namic power consumption using turbostat. We use Openwhisk
[8] as our serverless platform. The workload configuration
(e.g., input size) is the same as prior work [29].

The workflow of our trace-driven evaluation is shown in
Figure 16. We set up experiments with various serverless
functions [28] shown in Table II. Specifically, we evaluate our
design using different function pools as shown in Table III.
HO includes homogeneous functions whose multi-dimensional
attributes are all the same. Both HOI and HOE contains less
homogeneous functions which have limited similarity. Func-
tions in HOI all use the same languages (OOP convergence
in the initialization phase) and functions in HOE have the

Traces

Logs

FunctionsFunctionsFunctions
Function Pools:

HO, HOI, HOE, HE

Realistic
Invocation

FIRST

Perf. Model

Server
Config. Power MonitorServer Model

Perf. Monitor

CCF
Monitor

Invocation
Pattern

Fig. 16. The workflow of trace-driven evaluation

TABLE IV
INVOCATION PATTERNS ADOPTED FROM REAL CLUSTERS.

(a) Fairly Flat [2]) (b) Periodical [2]) (c) Fluctuating [29])

TABLE V
THE EVALUATED SCHEMES

Mechanism Description
PerfFst Performance-first scheduling scheme for ideal performance

Per-APP Fine-grained control considering function as a whole application
IRS-TL FIRST in Tidal-Lane mode (enhanced Prepare+)
IRS-FL FIRST in Fast-Lane mode (enhanced Gather+)

IRS-Dyn FIRST with enhanced front-end operators and Map+

same resource type (OOP convergence in the execution phase).
Lastly, HE just mixes all functions in the Table II.

We invoke each request set using three invocation patterns
as shown in Table IV. The average invocation rate is 50
functions/second. Especially, the fluctuating invocation pattern
follows the distribution-based invocation pattern of the Azure
serverless trace [29]. The generated traces includes the IDs,
invocation timestamps, and best-suited frequency of each
function. We feed the generated traces into our simulation
framework which uses a realistic server power model and
function execution data.

Table V summarizes our evaluated power management
schemes. We consider two important baselines which present
the state-of-the-art function management and power manage-
ment: PerfFst and Per-APP. PerfFst represents the current
performance-first scheduling scheme which invokes the func-
tion as soon as it arrives with the highest frequency and
colocates functions without resource contention [8]. It has the
shortest latency but may lead to OOP divergence. Per-APP
represents the state-of-the-art application-level, fine-grained
power management [10], [11], [36]. Rather than compare
IRS with a naı̈ve Per-App mechanism, we enhanced Per-App
by supporting OOP (but did not further distinguish between
initialization and execution phases). It can dynamically move
functions and select the desired frequency like IRS-Dyn.

V. EVALUATION RESULTS

A. Effectiveness of FIRST
We mainly use the energy-delay product (EDP), which

offers equal weight to both energy and performance, to eval-
uate our design. Figure 17 shows the average EDP using
various function pools and invocation patterns. All results are
normalized to PerfFst. On average, IRS-TL, IRS-FL and IRS-
Dyn show 18%, 14% and 24% lower EDP compared with

0.2
0.4
0.6
0.8

1

HO HOI HOE HE HO HOI HOE HE HO HOI HOE HE
Flat Pattern Periodical Pattern Fluctuating Pattern Avg.

N
or

m
. E

D
P

PerfFst Per-APP IRS-TL IRS-FL IRS-Dyn

0.76

0.79
0.82
0.86

Fig. 17. A comparison of the EDP of different schemes

0.5
0.7
0.9
1.1
1.3

HO HOI HOE HE HO HOI HOE HE HO HOI HOE HE
Flat Pattern Periodical Pattern Fluctuating Pattern Avg.

N
or

m
. L

at
en

cy

PerfFst Per-APP IRS-TL IRS-FL IRS-Dyn

1.13
1.81

1.23
1.20

Fig. 18. A comparison of the latency of different schemes

0.2
0.4
0.6
0.8

1

HO HOI HOE HE HO HOI HOE HE HO HOI HOE HE
Flat Pattern Periodical Pattern Fluctuating Pattern Avg.

N
or

m
. E

ne
rg

y

PerfFst Per-APP IRS-TL IRS-FL IRS-Dyn

0.67
0.74

0.68
0.71

Fig. 19. A comparison of the energy of different schemes

PerfFst, respectively. Per-APP is better than IRS-TL and IRS-
FL since it can dynamically select the most suitable frequency.
Overall, IRS-Dyn outperforms all the other schemes. The EDP
of IRS-Dyn is better than IRS-FL since IRS-FL pursues high
performance for some functions while disrupting OOP.

In addition to EDP, we also evaluate the latency and energy
as shown in Figure 18 and 19. All results are normalized to
PerfFst, which aims at high performance. We observe that
the latency of other schemes are all larger than PerfFst. IRS-
Dyn achieves the best performance compared to Per-APP, IRS-
TL and IRS-FL. Compared with PerfFst, IRS-Dyn only has
13% performance loss while achieving 33% energy savings on
average. IRS-Dyn outperforms Per-APP by 6%, with 3% less
energy. This could lead to attractive data center ROI (return on
investment) improvement. Notably, IRS would achieve better
performance with more diversified functions in practice.

B. Overall CCF and OOP Rate

Figures 20(a) and 20(b) show our results with heterogeneous
request set under invocation pattern C. As can be seen in
Figure 20(a), IRS-Dyn can maintain a near-zero CCF due to
its orderly function migration. In contrast, IRS-FL schedules
function on-demand and it cannot orderly deploy functions. Its
CCF is similar to PerfFst whose CCF fluctuates significantly.
Since IRS-TL invokes functions and assigns them in bulk, its
CCF fluctuates periodically. The results meet our expectations
as discussed in Section III-C. In general, the OOP rate of IRS-
Dyn is about 94%, as shown in 20(b). It implies that functions
can be processed with OOP convergence and it is the reason
that IRS-Dyn can achieve the best efficiency than others.

C. A Glance at the Frequency Distribution

It is critical to ensure that a function adopts its OOP. We
present the statistics of frequency distribution under different

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500

C
C

F

Time

PerfFst Per-APP IRS-TL IRS-FL IRS-Dyn

x10ms
(a) CCF (b) OOP Rate

periodically

0
0.2
0.4
0.6
0.8

1

HO HOI HOE HE Avg.

O
O

P
 R

at
e

Fig. 20. The CCF and OOP rate in the worst case

0
0.2
0.4
0.6
0.8
1

R
R

Pe
r-A
PP

IR
S-
TL

IR
S-
FL

IR
S-
D
yn R
R

Pe
r-A
PP

IR
S-
TL

IR
S-
FL

IR
S-
D
yn R
R

Pe
r-A
PP

IR
S-
TL

IR
S-
FL

IR
S-
D
yn R
R

Pe
r-A
PP

IR
S-
TL

IR
S-
FL

IR
S-
D
yn

HO HOI HOE HE

Fr
eq
ue
nc
y

D
is
tri
bu
tio
n

0.8GHz 0.9GHz 1.0GHz 1.1GHz 1.2GHz 1.3GHz 1.4GHz 1.5GHz
1.6GHz 1.7GHz 1.8GHz 1.9GHz 2.0GHz 2.1GHz 2.2GHz

O
ra
cl
e

O
ra
cl
e

O
ra
cl
e

O
ra
cl
e

Fig. 21. The resulted core frequency distribution

schemes in Figure 21. The rightmost bar (Oracle) shows the
optimal operating frequency of each workload. As we can
see, PerfFst uses fixed frequency since they are oblivious to
function attributes. The frequency distribution of IRS-Dyn is
most similar to Oracle in all cases as it manages functions
using FIRST to avoid OOP divergence.

D. Importance of Fine-Tuning Mixed Cores
Improperly setting the frequency of the Mixed Cores may

lead to degraded performance. To understand this, we simply
set the frequency of Mixed Cores with the min/max/avg value
of functions’ best-suited frequency. We compare the results
with the most efficient frequency settings calculated using our
heuristic algorithm (detailed in Figure 10).

Table VI shows the EDP of each mode under different
frequency tuning policies. It shows that Eff provides the
best efficiency for all the evaluated modes. Our customized
frequency tuning method Eff. for IRS-TL, IRS-FL and IRS-Dyn
can manifest 25%, 42%,8% EDP reduction compared with
Min, respectively. The EDP reduction of IRS-Dyn is far less
than IRS-TL and IRS-FL since IRS-Dyn maintains high OOP
rate and there are much fewer mixed cores.

E. Impact of Warm-start on FIRST
Functions with a warm start can skip the initialization phase

which is common in serverless computing platforms. In Figure
22, we investigate the optimization effectiveness of different
power management schemes under various warm start ratios (0

TABLE VI
COMPARISON OF DIFFERENT FREQUENCY TUNING POLICIES

IRS-TL IRS-FL IRS-Dyn
Min. freq. 1 1 1
Max. freq. 0.76 0.6 0.93
Avg. freq. 0.86 0.77 0.99
Eff. allocation 0.75 0.58 0.92

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

0
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

N
or

m
al

iz
ed

 E
D

P

Warm-start Ratio

IRS-TL IRS-FL IRS-Dyn

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

O
O

P
 R

at
e

Warm-start Ratio

(a) Normalized EDP (b) OOP Rate

Fig. 22. Impact of different warm-start ratios

60% 65% 70% 75% 80% 85% 90% 95% 100%
10% 1.65 1.57 1.48 1.39 1.30 1.21 1.12 1.03 0.94
20% 1.37 1.32 1.27 1.22 1.16 1.11 1.06 1.01 0.96
30% 1.12 1.09 1.06 1.03 1.00 0.98 0.95 0.92 0.89
40% 1.06 1.04 1.02 0.99 0.97 0.95 0.93 0.90 0.88
50% 1.05 1.04 1.02 1.01 0.99 0.97 0.96 0.94 0.92
60% 1.05 1.03 1.02 1.01 1.00 0.99 0.97 0.96 0.95
70% 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.92
80% 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95
90% 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.97

100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 C
or

e
O

cc
up

at
io

n
R

at
e

(C
O

R
)

Eco mode
Preferred

Dyn mode
Preferred

Dynamic Power Range

More Energy ProportionalTypical Range

Fig. 23. Normalized efficiency of the Eco mode

means all functions experience cold starts and 100% means all
functions experience warm starts). We use the most heteroge-
neous workload and highly fluctuating invocation pattern. In
the figure, all the results are normalized to IRS-Dyn. More
pre-warmed functions indicate that the variety of functions
reduces. As the warm-start ratio increases, IRS-TL and IRS-FL
both become more efficient. The differences between IRS-Dyn
and other schemes are narrowed.

F. The Necessity of the Eco Mode

FIRST’s Eco mode allows one to save more energy by
reducing the overall OOP rate. In Figure 23 we evaluate two
key parameters (COR and dynamic power range) that may
affect the effectiveness of the Eco Mode. All the results are
normalized to IRS-Dyn. As can be seen, Tune+ shows better ef-
ficiency with lower core occupation rate and smaller dynamic
power range (top left corner). For a typical dynamic power
range (i.e., 60% - 80%), Eco appears to be more competitive.
IRS-Dyn is desirable when the COR ranges between 30% and
70%. In extreme cases, IRS-Dyn can outperform Eco by 12%
if the server is fully energy-proportional.

G. Performance comparison under power budget

Ensuring OOP convergence of functions can help to improve
performance of serverless functions under power budget. In
Figure 24, we estimate the average latency of functions in HE
pool under the fluctuating invocation pattern. The maximum
power is 72W per node which allows all cores to process func-
tion at the highest frequency (2.2GHz). Under different power
budgets, IRS-Dyn achieves better performance compared with
PerfFst and Per-APP.

0.8
0.84
0.88
0.92
0.96

1

100% 95% 90% 85% 80% 75% 70% 65% 60%

N
or

m
. L

at
en

cy

% of Maximum Power

PerFst Per-APP IRS-Dyn

Fig. 24. Average latency under different power budget

0
0.2
0.4
0.6
0.8

1

Latency Energy EDP

N
or

m
. V

al
ue

Baseline OOP_Static OOP_Dynamic IRS-REAL

Fig. 25. Comparison of measured performance

VI. DISCUSSION

Finally, we evaluate FIRST on real machines that have non-
ideal control overhead. We also discuss how power-related
architectural features that affect the efficacy of FIRST.

A. System Prototype Analysis
We test FIRST on our server. We use the latest Linux power

management and function scheduling mechanism as the base-
line. We further consider three schemes: OOP Static - smartly
changing core frequency based on OOP; OOP Dynamic -
consolidating functions based on similarities, leaving fre-
quency tuning to the OS; and IRS-REAL - jointly consolidating
functions and selecting the optimal frequency.

We measure the latency, energy and EDP of our system
prototype as shown in Figure 25. The results of IRS-REAL
in all the cases are better than Baseline. The latency of IRS-
REAL is higher than OOP Dynamic since IRS-REAL needs
to adjust the frequency for the entire system. In terms of
energy saving, IRS-REAL can save 12% energy and reduce
6% latency, compared to Baseline. Besides, IRS-REAL can
reduce 17% EDP compared to Baseline, 8% EDP compared
to OOP Static, and 3% EDP compared to OOP Dynamic.

We also measure and present the key overhead introduced
by FIRST’s new abstraction as shown in Table VII. Be-
fore functions are invoked, the operator Prepare needs
about ⇠5ms to obtain the attributes of functions. Afterwards,
Prepare can process all functions in parallel. In addition,
FIRST needs to move functions among cores and change
the core frequency. We observe that the latency of function
migration and frequency change are about ⇠ 15ms (user-space
adjustment) and ⇠ 12ms on our system. Ideally, the delay of
frequency change ranges between ⇠10ns [13]- 20µs [11] and
the delay of thread motion is about ⇠0.25µs [25].

TABLE VII
OVERHEAD INTRODUCED BY FIRST

Operation Prepare Frequency adjustment Function migration
Software Cost ⇠ 5ms ⇠ 15ms ⇠ 12ms
Hardware Cost / ⇠10ns [13] - 20µs [11] ⇠ 0.25 µs [25]

0-30%
30-60%
60-100%

E3-1260L

E3-1225

E3-1240
E3-1290

E7-4809 v2

E3-1240 v2

E7-2850 v2

E7-8857 v2

E7-4809 v3

E5-2620 v3

E5-1650 v3

E7-8860 v3

Silver 4114 Gold 5118

Platinum 8158

Gold 6138

OOP worst case

OOP best case Po
we

r

50
55

60
65

70
75

80
85

(%)

(u
s)

CPU Microarchitecture OOP Rate

Fig. 26. Analysis of OOP convergence on different CPUs

TABLE VIII
THE IMPACT OF ENERGY PROPORTIONALITY METRICS ON CCF AND COR

Type Metrics Impact on CCF Impact on COR
Spatial Core Number Large Large

Temporal Power Transition Delay Large Minimal
Magnitude Dynamic Power Range Large Minimal

B. OOP-Friendly Architecture

When implementing FIRST, three factors in relation to
server energy proportionality also need to be considered care-
fully. As shown in Table VIII, they affect the CCF and COR
of evaluated servers in different ways.

First, the core number has a large impact on CCF and COR.
With more cores, it becomes easier to reshuffle functions from
the perspective of OOP convergence. However, the COR may
decline with more cores due to core under-utilization.

Second, the power transition delay (i.e., DVFS latency)
mainly affects the CCF of the system. With smaller power
transition delays, we can quickly adjust the power levels for
functions, thereby reducing the degree of disorder.

Third, given a larger dynamic power range of the processor,
the server often has more power allocation choices. In this
case, it is easier to identify the OOP for a group of functions
and deploy them with OOP convergence.

In Figure 26 we estimate the likelihood of OOP convergence
on modern CPUs of different generations. Some designs such
as Skylake and Haswell are more OOP-friendly. We expect
them to have better efficiency with FIRST, due to more CPU
cores, smaller power transition delay, and larger dynamic
range. Besides, more DVFS levels, agile thread management
and advanced monitoring can also enhance FIRST.

VII. RELATED WORK

Many prior works [4], [7], [9], [26], [29] aim to reduce the
cold start latency. Since the stateless feature makes function
interaction costly, researchers also propose to reduce the
communication overhead [18], [19]. There are some works
focusing on the scheduling of functions for performance [31],
[33]. Besides, researchers have also developed frameworks
and programming environment, aiming to construct serverless
functions easily and efficiently. [30], [39]. All the prior works
do not look at the power management side. Importantly, they

also ignore the multi-dimensional attributes of functions when
making scheduling decisions.

Many prior works [3], [5], [15], [22], [34], [36] aim to re-
duce power/energy consumption while guaranteeing the QoS.
Some works [6], [15], [22] identify the latency slacks inside
over-subscribed data centers. Another line of work mainly
focuses on efficient power control [17], [35], such as fine-grain
voltage boosting techniques [13]. Additionally, prior works
such as PEAS [34] focuses on optimizing energy-proportional
systems. These works incur OOP divergence in a complex
serverless computing scenario, since they are oblivious to the
attributes of co-located functions.

To the best of our knowledge, there are very limited work
on serverless function power management [20], [27]. Power-
aware system design for cloud-native applications is an open
problem that requires more effort.

VIII. CONCLUSION

Emerging cloud-native design raises new challenges about
managing server performance and power. We observe that
serverless functions exhibit unique power behaviors that are
overlooked by existing designs. To improve system efficiency
in such a highly complex and dynamic environment, we
propose FIRST, a well-crafted, multi-faceted system covering
both workload analysis and cross-system control. Extensive
evaluation shows that FIRST brings up to 24% energy effi-
ciency. We expect that FIRST would enable balanced perfor-
mance and efficiency in the cloud-native environment.

ACKNOWLEDGMENT

This work is supported in part by the National Nat-
ural Science Foundation of China (No.62122053 and
No.61972247), the Shanghai S&T Committee Rising-Star Pro-
gram (No.21QA1404400), and a Tencent Research Grant. We
thank all the anonymous reviewers for their valuable feedback.
Corresponding author is Chao Li.

REFERENCES

[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020.

[2] Alibaba, “Alibaba cluster data,” https://bit.ly/3iAus2R.
[3] A. Biswas, A. Majumdar, S. Das, and K. L. Baishnab, “Ocso-ca:

opposition based competitive swarm optimizer in energy efficient iot
clustering,” Frontiers of Computer Science, 2022.

[4] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“Seuss: skip redundant paths to make serverless fast,” in Proceedings
of the Fifteenth European Conference on Computer Systems (EuroSys),
2020.

[5] S. Chen, A. Jin, C. Delimitrou, and J. F. Martı́nez, “Retail: Opting
for learning simplicity to enable qos-aware power management in
the cloud,” in IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022.

[6] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µdpm: Dynamic power
management for the microsecond era,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019.

[7] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[8] A. S. Foundation, “Apache openwhisk,” Available:
https://openwhisk.apache.org/, accessed: 2019-11-12.

[9] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[10] A. Guliani and M. M. Swift, “Per-application power delivery,” in
Proceedings of Fourteenth European Conference on Computer Systems
(EuroSys), 2019.

[11] X. Hou, C. Li, J. Liu, Y. Hu, and M. Guo, “Ant-man: Enabling agile
power management in the microservice era,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020.

[12] X. Hou, C. Li, J. Liu, L. Zhang, S. Ren, J. Leng, Q. Chen, and
M. Guo, “Alphar: learning-powered resource management for irregular,
dynamic microservice graph,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2021.

[13] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015.

[14] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[15] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2015.

[16] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), 2019.

[17] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core dvfs using on-chip switching regulators,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture (HPCA), 2008.

[18] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless analytics,”
in 2018 USENIX Annual Technical Conference (ATC 18), 2018.

[19] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless ana-
lytics,” in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018, pp. 427–444.

[20] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless
computing survey: A technical primer for design architecture,” ACM
Computing Surveys (CSUR), vol. 54, no. 10s, pp. 1–34, 2022.

[21] M. Liu, C. Li, and T. Li, “Understanding the impact of vcpu scheduling
on dvfs-based power management in virtualized cloud environment,” in
2014 IEEE 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems, 2014.

[22] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), 2014.

[23] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, and B. Grot, “Stretch:
Balancing qos and throughput for colocated server workloads on smt
cores,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019.

[24] S. McCracken, “How to architect for sustainability in a cloud native en-
vironment,” https://www.contino.io/insights/cloud-native-sustainability,
2022.

[25] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proceedings of the 36th
annual international symposium on Computer architecture (ISCA), 2009.

[26] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: warming serverless
functions better with heterogeneity,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022.

[27] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: a
survey of opportunities, challenges, and applications,” ACM Computing
Surveys, vol. 54, no. 11s, pp. 1–32, 2022.

[28] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019.

[29] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference
(ATC), 2020.

[30] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless linear alge-
bra,” in Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC), 2020.

[31] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” in Proceedings of
the 11th ACM Symposium on Cloud Computing (SoCC), 2020.

[32] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in 2018 USENIX Annual Technical
Conference (ATC), 2018.

[33] X. Wang, C. Li, L. Zhang, X. Hou, Q. Chen, and M. Guo, “Exploring
efficient microservice level parallelism,” in International Parallel and
Distributed Processing Symposium (IPDPS), 2022.

[34] D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), 2016.

[35] G. Yan, Y. Li, Y. Han, X. Li, M. Guo, and X. Liang, “Agileregulator:
A hybrid voltage regulator scheme redeeming dark silicon for power
efficiency in a multicore architecture,” in IEEE International Symposium
on High-Performance Comp Architecture (HPCA), 2012.

[36] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA),
2017.

[37] L. Zhang, W. Feng, C. Li, X. Hou, P. Wang, J. Wang, and M. Guo,
“Tapping into nfv environment for opportunistic serverless edge function
deployment,” IEEE Transactions on Computers, 2021.

[38] L. Zhang, Y. Pu, C. Xu, D. Liu, Z. Lin, X. Hou, P. Yang, S. Yue, C. Li,
and M. Guo, “Cloud-native server consolidation for energy-efficient faas
deployment,” in Annual IFIP International Conference on Network and
Parallel Computing (NPC), 2022.

[39] W. Zhang, V. Fang, A. Panda, and S. Shenker, “Kappa: a programming
framework for serverless computing,” in Proceedings of the 11th ACM
Symposium on Cloud Computing (SoCC), 2020.

[40] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys), 2013.

